Nuprl Lemma : qle_wf

[r,s:ℚ].  (r ≤ s ∈ ℙ)


Proof




Definitions occuring in Statement :  qle: r ≤ s rationals: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  qle: r ≤ s uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t)
Lemmas referenced :  grp_leq_wf qadd_grp_wf2 ocgrp_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality lambdaEquality setElimination rename hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[r,s:\mBbbQ{}].    (r  \mleq{}  s  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-10_45_20
Last ObjectModification: 2015_12_27-PM-07_53_44

Theory : rationals


Home Index