Nuprl Lemma : qpositive-elim
∀[r:ℚ]. (qpositive(r) ~ if isint(r) then 0 <z r else let p,q = r in (0 <z p ∧b 0 <z q) ∨b(p <z 0 ∧b q <z 0) fi )
Proof
Definitions occuring in Statement : 
qpositive: qpositive(r)
, 
rationals: ℚ
, 
bor: p ∨bq
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
bfalse: ff
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
isint: isint def, 
spread: spread def, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qpositive: qpositive(r)
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
valueall-type-has-valueall, 
rationals_wf, 
rationals-valueall-type, 
evalall-reduce
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
callbyvalueReduce, 
sqequalAxiom
Latex:
\mforall{}[r:\mBbbQ{}]
    (qpositive(r)  \msim{}  if  isint(r)
    then  0  <z  r
    else  let  p,q  =  r 
              in  (0  <z  p  \mwedge{}\msubb{}  0  <z  q)  \mvee{}\msubb{}(p  <z  0  \mwedge{}\msubb{}  q  <z  0)
    fi  )
Date html generated:
2016_05_15-PM-10_39_37
Last ObjectModification:
2015_12_27-PM-07_58_58
Theory : rationals
Home
Index