Nuprl Lemma : qpositive-elim

[r:ℚ]. (qpositive(r) if isint(r) then 0 <else let p,q in (0 <p ∧b 0 <q) ∨b(p <0 ∧b q <0) fi )


Proof




Definitions occuring in Statement :  qpositive: qpositive(r) rationals: bor: p ∨bq band: p ∧b q ifthenelse: if then else fi  lt_int: i <j bfalse: ff btrue: tt uall: [x:A]. B[x] isint: isint def spread: spread def natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qpositive: qpositive(r) uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce sqequalAxiom

Latex:
\mforall{}[r:\mBbbQ{}]
    (qpositive(r)  \msim{}  if  isint(r)
    then  0  <z  r
    else  let  p,q  =  r 
              in  (0  <z  p  \mwedge{}\msubb{}  0  <z  q)  \mvee{}\msubb{}(p  <z  0  \mwedge{}\msubb{}  q  <z  0)
    fi  )



Date html generated: 2016_05_15-PM-10_39_37
Last ObjectModification: 2015_12_27-PM-07_58_58

Theory : rationals


Home Index