Nuprl Lemma : qmul-elim
∀[r,s:ℚ].
(r * s ~ if isint(r)
then if isint(s) then r * s else let i,j = s in <r * i, j> fi
else let p,q = r
in if isint(s) then <p * s, q> else let i,j = s in <p * i, q * j> fi
fi )
Proof
Definitions occuring in Statement :
qmul: r * s
,
rationals: ℚ
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
btrue: tt
,
uall: ∀[x:A]. B[x]
,
isint: isint def,
spread: spread def,
pair: <a, b>
,
multiply: n * m
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
qmul: r * s
,
uimplies: b supposing a
,
callbyvalueall: callbyvalueall,
has-value: (a)↓
,
has-valueall: has-valueall(a)
Lemmas referenced :
valueall-type-has-valueall,
rationals_wf,
rationals-valueall-type,
evalall-reduce
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
independent_isectElimination,
hypothesisEquality,
callbyvalueReduce,
because_Cache,
sqequalAxiom,
isect_memberEquality
Latex:
\mforall{}[r,s:\mBbbQ{}].
(r * s \msim{} if isint(r)
then if isint(s) then r * s else let i,j = s in <r * i, j> fi
else let p,q = r
in if isint(s) then <p * s, q> else let i,j = s in <p * i, q * j> fi
fi )
Date html generated:
2016_05_15-PM-10_39_44
Last ObjectModification:
2015_12_27-PM-07_58_56
Theory : rationals
Home
Index