Nuprl Lemma : ws-monotone

[p:ℚ List]. ∀[F,G:ℕ||p|| ⟶ ℚ].
  (weighted-sum(p;F) ≤ weighted-sum(p;G)) supposing ((∀x:ℕ||p||. ((F x) ≤ (G x))) and (∀q:ℚ((q ∈ p)  (0 ≤ q))))


Proof




Definitions occuring in Statement :  weighted-sum: weighted-sum(p;F) qle: r ≤ s rationals: l_member: (x ∈ l) length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q decidable: Dec(P) or: P ∨ Q qle: r ≤ s grp_leq: a ≤ b assert: b ifthenelse: if then else fi  infix_ap: y grp_le: b pi1: fst(t) pi2: snd(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s btrue: tt lt_int: i <j bfalse: ff qeq: qeq(r;s) eq_int: (i =z j) true: True cons: [a b] le: A ≤ B append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k subtract: m less_than: a < b less_than': less_than'(a;b) nat_plus: + rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  qle_witness weighted-sum_wf int_seg_wf length_wf rationals_wf all_wf qle_wf l_member_wf int-subtype-rationals list_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf length_wf_nat list-cases length_of_nil_lemma ws_nil_lemma product_subtype_list length_of_cons_lemma non_neg_length itermAdd_wf int_term_value_add_lemma list_ind_cons_lemma list_ind_nil_lemma cons_wf nil_wf ws_single_lemma squash_wf true_wf weighted-sum-split iff_weakening_equal add-is-int-iff false_wf add-member-int_seg2 decidable__lt lelt_wf cons_member equal_wf qmul_com add_nat_plus nat_plus_wf nat_plus_properties intformeq_wf int_formula_prop_eq_lemma qmul_wf decidable__qless qmul_preserves_qle qless_complement_qorder qle_antisymmetry qmul_zero_qrng qadd_wf mon_assoc_q mon_ident_q grp_op_preserves_le_qorder qadd_com qle_transitivity_qorder
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin sqequalHypSubstitution dependent_functionElimination hypothesisEquality hypothesis independent_functionElimination extract_by_obid isectElimination functionExtensionality applyEquality natural_numberEquality sqequalRule lambdaEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality lambdaFormation setElimination rename intWeakElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll unionElimination promote_hyp hypothesis_subsumption productElimination imageElimination imageMemberEquality baseClosed universeEquality pointwiseFunctionality baseApply closedConclusion dependent_set_memberEquality addEquality inrFormation applyLambdaEquality hyp_replacement inlFormation

Latex:
\mforall{}[p:\mBbbQ{}  List].  \mforall{}[F,G:\mBbbN{}||p||  {}\mrightarrow{}  \mBbbQ{}].
    (weighted-sum(p;F)  \mleq{}  weighted-sum(p;G))  supposing 
          ((\mforall{}x:\mBbbN{}||p||.  ((F  x)  \mleq{}  (G  x)))  and 
          (\mforall{}q:\mBbbQ{}.  ((q  \mmember{}  p)  {}\mRightarrow{}  (0  \mleq{}  q))))



Date html generated: 2018_05_22-AM-00_34_27
Last ObjectModification: 2017_07_26-PM-06_59_48

Theory : randomness


Home Index