Nuprl Lemma : ws-monotone
∀[p:ℚ List]. ∀[F,G:ℕ||p|| ⟶ ℚ].
  (weighted-sum(p;F) ≤ weighted-sum(p;G)) supposing ((∀x:ℕ||p||. ((F x) ≤ (G x))) and (∀q:ℚ. ((q ∈ p) 
⇒ (0 ≤ q))))
Proof
Definitions occuring in Statement : 
weighted-sum: weighted-sum(p;F)
, 
qle: r ≤ s
, 
rationals: ℚ
, 
l_member: (x ∈ l)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
qle: r ≤ s
, 
grp_leq: a ≤ b
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
infix_ap: x f y
, 
grp_le: ≤b
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
qadd_grp: <ℚ+>
, 
q_le: q_le(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
bor: p ∨bq
, 
qpositive: qpositive(r)
, 
qsub: r - s
, 
qadd: r + s
, 
qmul: r * s
, 
btrue: tt
, 
lt_int: i <z j
, 
bfalse: ff
, 
qeq: qeq(r;s)
, 
eq_int: (i =z j)
, 
true: True
, 
cons: [a / b]
, 
le: A ≤ B
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
subtract: n - m
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
qle_witness, 
weighted-sum_wf, 
int_seg_wf, 
length_wf, 
rationals_wf, 
all_wf, 
qle_wf, 
l_member_wf, 
int-subtype-rationals, 
list_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
le_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
length_wf_nat, 
list-cases, 
length_of_nil_lemma, 
ws_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
cons_wf, 
nil_wf, 
ws_single_lemma, 
squash_wf, 
true_wf, 
weighted-sum-split, 
iff_weakening_equal, 
add-is-int-iff, 
false_wf, 
add-member-int_seg2, 
decidable__lt, 
lelt_wf, 
cons_member, 
equal_wf, 
qmul_com, 
add_nat_plus, 
nat_plus_wf, 
nat_plus_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
qmul_wf, 
decidable__qless, 
qmul_preserves_qle, 
qless_complement_qorder, 
qle_antisymmetry, 
qmul_zero_qrng, 
qadd_wf, 
mon_assoc_q, 
mon_ident_q, 
grp_op_preserves_le_qorder, 
qadd_com, 
qle_transitivity_qorder
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
extract_by_obid, 
isectElimination, 
functionExtensionality, 
applyEquality, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
dependent_set_memberEquality, 
addEquality, 
inrFormation, 
applyLambdaEquality, 
hyp_replacement, 
inlFormation
Latex:
\mforall{}[p:\mBbbQ{}  List].  \mforall{}[F,G:\mBbbN{}||p||  {}\mrightarrow{}  \mBbbQ{}].
    (weighted-sum(p;F)  \mleq{}  weighted-sum(p;G))  supposing 
          ((\mforall{}x:\mBbbN{}||p||.  ((F  x)  \mleq{}  (G  x)))  and 
          (\mforall{}q:\mBbbQ{}.  ((q  \mmember{}  p)  {}\mRightarrow{}  (0  \mleq{}  q))))
Date html generated:
2018_05_22-AM-00_34_27
Last ObjectModification:
2017_07_26-PM-06_59_48
Theory : randomness
Home
Index