Nuprl Lemma : grp_op_preserves_le_qorder

[x,y,z:ℚ].  (x y) ≤ (x z) supposing y ≤ z


Proof




Definitions occuring in Statement :  qle: r ≤ s qadd: s rationals: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) infix_ap: y qle: r ≤ s
Lemmas referenced :  grp_op_preserves_le qadd_grp_wf2 ocgrp_subtype_ocmon
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[x,y,z:\mBbbQ{}].    (x  +  y)  \mleq{}  (x  +  z)  supposing  y  \mleq{}  z



Date html generated: 2020_05_20-AM-09_15_08
Last ObjectModification: 2020_02_04-PM-01_42_05

Theory : rationals


Home Index