Nuprl Lemma : grp_op_preserves_le_qorder
∀[x,y,z:ℚ].  (x + y) ≤ (x + z) supposing y ≤ z
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qadd: r + s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
qadd_grp: <ℚ+>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
qle: r ≤ s
Lemmas referenced : 
grp_op_preserves_le, 
qadd_grp_wf2, 
ocgrp_subtype_ocmon
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
sqequalRule
Latex:
\mforall{}[x,y,z:\mBbbQ{}].    (x  +  y)  \mleq{}  (x  +  z)  supposing  y  \mleq{}  z
Date html generated:
2020_05_20-AM-09_15_08
Last ObjectModification:
2020_02_04-PM-01_42_05
Theory : rationals
Home
Index