Nuprl Lemma : grp_op_preserves_le
∀[g:OCMon]. ∀[x,y,z:|g|].  (x * y) ≤ (x * z) supposing y ≤ z
Proof
Definitions occuring in Statement : 
grp_leq: a ≤ b
, 
ocmon: OCMon
, 
grp_op: *
, 
grp_car: |g|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
Definitions unfolded in proof : 
monot: monot(T;x,y.R[x; y];f)
, 
grp_leq: a ≤ b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
infix_ap: x f y
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
ocmon_6, 
assert_witness, 
grp_le_wf, 
grp_op_wf, 
grp_leq_wf, 
grp_car_wf, 
ocmon_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
sqequalSubstitution, 
isect_memberFormation, 
introduction, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination
Latex:
\mforall{}[g:OCMon].  \mforall{}[x,y,z:|g|].    (x  *  y)  \mleq{}  (x  *  z)  supposing  y  \mleq{}  z
Date html generated:
2016_05_15-PM-00_12_46
Last ObjectModification:
2015_12_26-PM-11_42_13
Theory : groups_1
Home
Index