Nuprl Lemma : grp_op_preserves_le

[g:OCMon]. ∀[x,y,z:|g|].  (x y) ≤ (x z) supposing y ≤ z


Proof




Definitions occuring in Statement :  grp_leq: a ≤ b ocmon: OCMon grp_op: * grp_car: |g| uimplies: supposing a uall: [x:A]. B[x] infix_ap: y
Definitions unfolded in proof :  monot: monot(T;x,y.R[x; y];f) grp_leq: a ≤ b uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a infix_ap: y ocmon: OCMon abmonoid: AbMon mon: Mon implies:  Q prop: guard: {T} all: x:A. B[x]
Lemmas referenced :  ocmon_6 assert_witness grp_le_wf grp_op_wf grp_leq_wf grp_car_wf ocmon_wf
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep sqequalSubstitution isect_memberFormation introduction isectElimination thin applyEquality setElimination rename hypothesisEquality hypothesis independent_functionElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination

Latex:
\mforall{}[g:OCMon].  \mforall{}[x,y,z:|g|].    (x  *  y)  \mleq{}  (x  *  z)  supposing  y  \mleq{}  z



Date html generated: 2016_05_15-PM-00_12_46
Last ObjectModification: 2015_12_26-PM-11_42_13

Theory : groups_1


Home Index