Nuprl Lemma : ocmon_6

[g:OCMon]. ∀[z:|g|].  monot(|g|;x,y.↑(x ≤b y);λw.(z w))


Proof




Definitions occuring in Statement :  ocmon: OCMon grp_op: * grp_le: b grp_car: |g| monot: monot(T;x,y.R[x; y];f) assert: b uall: [x:A]. B[x] infix_ap: y lambda: λx.A[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q ulinorder: UniformLinorder(T;x,y.R[x; y]) uorder: UniformOrder(T;x,y.R[x; y]) eqfun_p: IsEqFun(T;eq) monot: monot(T;x,y.R[x; y];f) cancel: Cancel(T;S;op) connex: Connex(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) implies:  Q ocmon: OCMon abmonoid: AbMon mon: Mon infix_ap: y prop:
Lemmas referenced :  ocmon_properties assert_witness infix_ap_wf grp_car_wf bool_wf grp_le_wf grp_op_wf assert_wf ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination sqequalRule isect_memberEquality isectElimination lambdaEquality setElimination rename because_Cache independent_functionElimination applyEquality

Latex:
\mforall{}[g:OCMon].  \mforall{}[z:|g|].    monot(|g|;x,y.\muparrow{}(x  \mleq{}\msubb{}  y);\mlambda{}w.(z  *  w))



Date html generated: 2016_05_15-PM-00_11_26
Last ObjectModification: 2015_12_26-PM-11_43_38

Theory : groups_1


Home Index