Nuprl Lemma : mon_assoc_q
∀[a,b,c:ℚ]. ((a + b + c) = ((a + b) + c) ∈ ℚ)
Proof
Definitions occuring in Statement :
qadd: r + s
,
rationals: ℚ
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
abgrp: AbGrp
,
grp: Group{i}
,
mon: Mon
,
imon: IMonoid
,
prop: ℙ
,
qadd_grp: <ℚ+>
,
grp_car: |g|
,
pi1: fst(t)
,
grp_op: *
,
pi2: snd(t)
,
infix_ap: x f y
Lemmas referenced :
mon_assoc,
qadd_grp_wf,
grp_sig_wf,
monoid_p_wf,
grp_car_wf,
grp_op_wf,
grp_id_wf,
inverse_wf,
grp_inv_wf,
comm_wf
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesis,
applyEquality,
sqequalRule,
lambdaEquality_alt,
setElimination,
rename,
hypothesisEquality,
setIsType,
universeIsType,
because_Cache
Latex:
\mforall{}[a,b,c:\mBbbQ{}]. ((a + b + c) = ((a + b) + c))
Date html generated:
2020_05_20-AM-09_13_42
Last ObjectModification:
2020_01_28-AM-11_50_30
Theory : rationals
Home
Index