Nuprl Lemma : qadd_grp_wf
<ℚ+> ∈ AbGrp
Proof
Definitions occuring in Statement : 
qadd_grp: <ℚ+>
, 
member: t ∈ T
, 
abgrp: AbGrp
Definitions unfolded in proof : 
prop: ℙ
, 
mon: Mon
, 
grp: Group{i}
, 
uall: ∀[x:A]. B[x]
, 
abgrp: AbGrp
, 
member: t ∈ T
, 
qadd_grp: <ℚ+>
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
ident: Ident(T;op;id)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
inverse: Inverse(T;op;id;inv)
, 
comm: Comm(T;op)
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
Lemmas referenced : 
grp_op_wf, 
grp_car_wf, 
comm_wf, 
qmul_wf, 
int-subtype-rationals, 
qadd_wf, 
q_le_wf, 
qeq_wf2, 
rationals_wf, 
mk_grp, 
qadd_assoc, 
equal_wf, 
qadd_com, 
iff_weakening_equal, 
qadd_ident, 
qadd_minus, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self
Rules used in proof : 
because_Cache, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_isectElimination, 
minusEquality, 
sqequalRule, 
applyEquality, 
natural_numberEquality, 
lambdaEquality, 
isect_memberFormation_alt, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
universeIsType, 
lambdaEquality_alt, 
imageElimination, 
closedConclusion, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
independent_pairEquality, 
instantiate, 
universeEquality
Latex:
<\mBbbQ{}+>  \mmember{}  AbGrp
Date html generated:
2020_05_20-AM-09_13_39
Last ObjectModification:
2020_01_17-AM-11_08_27
Theory : rationals
Home
Index