Nuprl Lemma : qadd_grp_wf
<ℚ+> ∈ AbGrp
Proof
Definitions occuring in Statement :
qadd_grp: <ℚ+>
,
member: t ∈ T
,
abgrp: AbGrp
Definitions unfolded in proof :
prop: ℙ
,
mon: Mon
,
grp: Group{i}
,
uall: ∀[x:A]. B[x]
,
abgrp: AbGrp
,
member: t ∈ T
,
qadd_grp: <ℚ+>
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
assoc: Assoc(T;op)
,
infix_ap: x f y
,
ident: Ident(T;op;id)
,
and: P ∧ Q
,
cand: A c∧ B
,
squash: ↓T
,
true: True
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
inverse: Inverse(T;op;id;inv)
,
comm: Comm(T;op)
,
grp_car: |g|
,
pi1: fst(t)
,
grp_op: *
,
pi2: snd(t)
Lemmas referenced :
grp_op_wf,
grp_car_wf,
comm_wf,
qmul_wf,
int-subtype-rationals,
qadd_wf,
q_le_wf,
qeq_wf2,
rationals_wf,
mk_grp,
qadd_assoc,
equal_wf,
qadd_com,
iff_weakening_equal,
qadd_ident,
qadd_minus,
squash_wf,
true_wf,
istype-universe,
subtype_rel_self
Rules used in proof :
because_Cache,
hypothesis,
hypothesisEquality,
rename,
setElimination,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
introduction,
cut,
dependent_set_memberEquality,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution,
independent_isectElimination,
minusEquality,
sqequalRule,
applyEquality,
natural_numberEquality,
lambdaEquality,
isect_memberFormation_alt,
equalitySymmetry,
inhabitedIsType,
isect_memberEquality_alt,
axiomEquality,
isectIsTypeImplies,
universeIsType,
lambdaEquality_alt,
imageElimination,
closedConclusion,
imageMemberEquality,
baseClosed,
equalityTransitivity,
productElimination,
independent_functionElimination,
independent_pairFormation,
independent_pairEquality,
instantiate,
universeEquality
Latex:
<\mBbbQ{}+> \mmember{} AbGrp
Date html generated:
2020_05_20-AM-09_13_39
Last ObjectModification:
2020_01_17-AM-11_08_27
Theory : rationals
Home
Index