Nuprl Lemma : qadd_grp_wf

<ℚ+> ∈ AbGrp


Proof




Definitions occuring in Statement :  qadd_grp: <ℚ+> member: t ∈ T abgrp: AbGrp
Definitions unfolded in proof :  prop: mon: Mon grp: Group{i} uall: [x:A]. B[x] abgrp: AbGrp member: t ∈ T qadd_grp: <ℚ+> uimplies: supposing a subtype_rel: A ⊆B assoc: Assoc(T;op) infix_ap: y ident: Ident(T;op;id) and: P ∧ Q cand: c∧ B squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q inverse: Inverse(T;op;id;inv) comm: Comm(T;op) grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t)
Lemmas referenced :  grp_op_wf grp_car_wf comm_wf qmul_wf int-subtype-rationals qadd_wf q_le_wf qeq_wf2 rationals_wf mk_grp qadd_assoc equal_wf qadd_com iff_weakening_equal qadd_ident qadd_minus squash_wf true_wf istype-universe subtype_rel_self
Rules used in proof :  because_Cache hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut dependent_set_memberEquality sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_isectElimination minusEquality sqequalRule applyEquality natural_numberEquality lambdaEquality isect_memberFormation_alt equalitySymmetry inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType lambdaEquality_alt imageElimination closedConclusion imageMemberEquality baseClosed equalityTransitivity productElimination independent_functionElimination independent_pairFormation independent_pairEquality instantiate universeEquality

Latex:
<\mBbbQ{}+>  \mmember{}  AbGrp



Date html generated: 2020_05_20-AM-09_13_39
Last ObjectModification: 2020_01_17-AM-11_08_27

Theory : rationals


Home Index