Nuprl Lemma : q_le_wf
∀[r,s:ℚ].  (q_le(r;s) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
q_le: q_le(r;s)
, 
rationals: ℚ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
q_le: q_le(r;s)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
valueall-type-has-valueall, 
rationals_wf, 
rationals-valueall-type, 
evalall-reduce, 
bor_wf, 
qpositive_wf, 
qsub_wf, 
qeq_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
callbyvalueReduce, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[r,s:\mBbbQ{}].    (q\_le(r;s)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-10_40_37
Last ObjectModification:
2015_12_27-PM-07_58_20
Theory : rationals
Home
Index