Nuprl Lemma : q_le_wf

[r,s:ℚ].  (q_le(r;s) ∈ 𝔹)


Proof




Definitions occuring in Statement :  q_le: q_le(r;s) rationals: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  q_le: q_le(r;s) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce bor_wf qpositive_wf qsub_wf qeq_wf2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[r,s:\mBbbQ{}].    (q\_le(r;s)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-10_40_37
Last ObjectModification: 2015_12_27-PM-07_58_20

Theory : rationals


Home Index