Nuprl Lemma : qpositive_wf

[r:ℚ]. (qpositive(r) ∈ 𝔹)


Proof




Definitions occuring in Statement :  qpositive: qpositive(r) rationals: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  btrue: tt bfalse: ff or: P ∨ Q rev_implies:  Q iff: ⇐⇒ Q int_nzero: -o so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B true: True squash: T uiff: uiff(P;Q) has-valueall: has-valueall(a) has-value: (a)↓ callbyvalueall: callbyvalueall uimplies: supposing a prop: qeq: qeq(r;s) qpositive: qpositive(r) pi2: snd(t) ifthenelse: if then else fi  unit: Unit bool: 𝔹 tunion: x:A.B[x] b-union: A ⋃ B implies:  Q all: x:A. B[x] and: P ∧ Q quotient: x,y:A//B[x; y] rationals: member: t ∈ T uall: [x:A]. B[x] top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) nequal: a ≠ b ∈  gt: i > j guard: {T} sq_type: SQType(T) cand: c∧ B
Lemmas referenced :  assert_of_lt_int assert_of_band assert_of_bor iff_weakening_uiff iff_transitivity iff_wf assert_wf less_than_wf or_wf eq_int_wf band_wf bor_wf iff_imp_equal_bool nequal_wf set-valueall-type product-valueall-type int_subtype_base true_wf squash_wf lt_int_wf assert_of_eq_int eqtt_to_assert evalall-reduce int-valueall-type valueall-type-has-valueall rationals_wf equal-wf-base equal_wf qeq_wf equal-wf-T-base int_nzero_wf b-union_wf bool_wf int_formula_prop_wf int_formula_prop_or_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformor_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt int_nzero_properties neg_mul_arg_bounds gt_wf pos_mul_arg_bounds subtype_base_sq full-omega-unsat intformeq_wf int_formula_prop_eq_lemma decidable__equal_int int_entire int_term_value_mul_lemma itermMultiply_wf int_formual_prop_imp_lemma intformimplies_wf
Rules used in proof :  orFunctionality impliesFunctionality addLevel isintReduceTrue independent_pairFormation rename setElimination multiplyEquality independent_pairEquality closedConclusion baseApply imageMemberEquality natural_numberEquality lambdaEquality applyEquality callbyvalueReduce independent_isectElimination axiomEquality dependent_functionElimination baseClosed hypothesisEquality independent_functionElimination equalityElimination unionElimination imageElimination because_Cache lambdaFormation productEquality intEquality isectElimination equalitySymmetry equalityTransitivity thin productElimination pertypeElimination sqequalRule hypothesis extract_by_obid pointwiseFunctionalityForEquality sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution computeAll voidEquality voidElimination isect_memberEquality int_eqEquality dependent_pairFormation levelHypothesis andLevelFunctionality cumulativity instantiate promote_hyp inlFormation approximateComputation inrFormation

Latex:
\mforall{}[r:\mBbbQ{}].  (qpositive(r)  \mmember{}  \mBbbB{})



Date html generated: 2018_05_21-PM-11_46_06
Last ObjectModification: 2017_07_26-PM-06_43_05

Theory : rationals


Home Index