Nuprl Lemma : qle_transitivity_qorder
∀[a,b,c:ℚ].  (a ≤ c) supposing ((b ≤ c) and (a ≤ b))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
qadd_grp: <ℚ+>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
qle: r ≤ s
Lemmas referenced : 
grp_leq_transitivity, 
qadd_grp_wf2, 
ocgrp_subtype_ocmon
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
sqequalRule
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (a  \mleq{}  c)  supposing  ((b  \mleq{}  c)  and  (a  \mleq{}  b))
Date html generated:
2020_05_20-AM-09_14_51
Last ObjectModification:
2020_01_28-PM-04_20_58
Theory : rationals
Home
Index