Nuprl Lemma : qle_transitivity_qorder

[a,b,c:ℚ].  (a ≤ c) supposing ((b ≤ c) and (a ≤ b))


Proof




Definitions occuring in Statement :  qle: r ≤ s rationals: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) qle: r ≤ s
Lemmas referenced :  grp_leq_transitivity qadd_grp_wf2 ocgrp_subtype_ocmon
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (a  \mleq{}  c)  supposing  ((b  \mleq{}  c)  and  (a  \mleq{}  b))



Date html generated: 2020_05_20-AM-09_14_51
Last ObjectModification: 2020_01_28-PM-04_20_58

Theory : rationals


Home Index