Nuprl Lemma : qmul_zero_qrng

[a:ℚ]. (((0 a) 0 ∈ ℚ) ∧ ((a 0) 0 ∈ ℚ))


Proof




Definitions occuring in Statement :  qmul: s rationals: uall: [x:A]. B[x] and: P ∧ Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) rng_zero: 0 infix_ap: y
Lemmas referenced :  rng_times_zero qrng_wf crng_subtype_rng
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[a:\mBbbQ{}].  (((0  *  a)  =  0)  \mwedge{}  ((a  *  0)  =  0))



Date html generated: 2020_05_20-AM-09_15_30
Last ObjectModification: 2020_02_03-PM-03_23_43

Theory : rationals


Home Index