Nuprl Lemma : qrng_wf
<ℚ+*> ∈ CRng
Proof
Definitions occuring in Statement : 
qrng: <ℚ+*>
, 
member: t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
member: t ∈ T
, 
crng: CRng
, 
comm: Comm(T;op)
, 
qrng: <ℚ+*>
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_times: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
rng: Rng
, 
prop: ℙ
, 
rng_sig: RngSig
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exposed-bfalse: exposed-bfalse
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
rng_plus: +r
, 
rng_zero: 0
, 
rng_minus: -r
, 
rng_one: 1
, 
cand: A c∧ B
, 
group_p: IsGroup(T;op;id;inv)
, 
rationals: ℚ
, 
quotient: x,y:A//B[x; y]
, 
grp_car: |g|
, 
qadd_grp: <ℚ+>
, 
grp_op: *
, 
grp_id: e
, 
grp_inv: ~
, 
monoid_p: IsMonoid(T;op;id)
, 
ident: Ident(T;op;id)
, 
assoc: Assoc(T;op)
, 
squash: ↓T
, 
true: True
, 
bilinear: BiLinear(T;pl;tm)
Lemmas referenced : 
qmul_com, 
rationals_wf, 
comm_wf, 
rng_car_wf, 
rng_times_wf, 
ring_p_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_one_wf, 
qeq_wf2, 
q_le_wf, 
qadd_wf, 
int-subtype-rationals, 
qmul_wf, 
eqtt_to_assert, 
assert-qeq, 
it_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal-wf-T-base, 
qdiv_wf, 
unit_wf2, 
imon_properties, 
qadd_grp_wf2, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
abdmonoid_abmonoid, 
ocmon_subtype_abdmonoid, 
ocgrp_subtype_ocmon, 
subtype_rel_transitivity, 
ocgrp_wf, 
ocmon_wf, 
abdmonoid_wf, 
abmonoid_wf, 
iabmonoid_wf, 
imon_wf, 
igrp_properties, 
grp_subtype_igrp, 
abgrp_subtype_grp, 
ocgrp_subtype_abgrp, 
abgrp_wf, 
grp_wf, 
igrp_wf, 
qmul_assoc, 
equal_wf, 
iff_weakening_equal, 
qmul_ident, 
q_distrib
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality_alt, 
sqequalRule, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
universeIsType, 
setElimination, 
rename, 
because_Cache, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
closedConclusion, 
natural_numberEquality, 
applyEquality, 
minusEquality, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
inrEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
inlEquality_alt, 
functionIsType, 
unionIsType, 
productIsType, 
independent_pairFormation, 
imageElimination, 
imageMemberEquality, 
independent_pairEquality
Latex:
<\mBbbQ{}+*>  \mmember{}  CRng
Date html generated:
2020_05_20-AM-09_15_19
Last ObjectModification:
2020_01_18-AM-10_21_54
Theory : rationals
Home
Index