Nuprl Lemma : qrng_wf

<ℚ+*> ∈ CRng


Proof




Definitions occuring in Statement :  qrng: <ℚ+*> member: t ∈ T crng: CRng
Definitions unfolded in proof :  member: t ∈ T crng: CRng comm: Comm(T;op) qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) infix_ap: y uall: [x:A]. B[x] rng: Rng prop: rng_sig: RngSig subtype_rel: A ⊆B all: x:A. B[x] implies:  Q exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q ring_p: IsRing(T;plus;zero;neg;times;one) rng_plus: +r rng_zero: 0 rng_minus: -r rng_one: 1 cand: c∧ B group_p: IsGroup(T;op;id;inv) rationals: quotient: x,y:A//B[x; y] grp_car: |g| qadd_grp: <ℚ+> grp_op: * grp_id: e grp_inv: ~ monoid_p: IsMonoid(T;op;id) ident: Ident(T;op;id) assoc: Assoc(T;op) squash: T true: True bilinear: BiLinear(T;pl;tm)
Lemmas referenced :  qmul_com rationals_wf comm_wf rng_car_wf rng_times_wf ring_p_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_one_wf qeq_wf2 q_le_wf qadd_wf int-subtype-rationals qmul_wf eqtt_to_assert assert-qeq it_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base qdiv_wf unit_wf2 imon_properties qadd_grp_wf2 iabmonoid_subtype_imon abmonoid_subtype_iabmonoid abdmonoid_abmonoid ocmon_subtype_abdmonoid ocgrp_subtype_ocmon subtype_rel_transitivity ocgrp_wf ocmon_wf abdmonoid_wf abmonoid_wf iabmonoid_wf imon_wf igrp_properties grp_subtype_igrp abgrp_subtype_grp ocgrp_subtype_abgrp abgrp_wf grp_wf igrp_wf qmul_assoc equal_wf iff_weakening_equal qmul_ident q_distrib
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_set_memberEquality_alt sqequalRule isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType setElimination rename because_Cache dependent_pairEquality_alt lambdaEquality_alt closedConclusion natural_numberEquality applyEquality minusEquality lambdaFormation_alt unionElimination equalityElimination productElimination independent_isectElimination inrEquality_alt equalityTransitivity equalitySymmetry dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination baseClosed inlEquality_alt functionIsType unionIsType productIsType independent_pairFormation imageElimination imageMemberEquality independent_pairEquality

Latex:
<\mBbbQ{}+*>  \mmember{}  CRng



Date html generated: 2020_05_20-AM-09_15_19
Last ObjectModification: 2020_01_18-AM-10_21_54

Theory : rationals


Home Index