Nuprl Lemma : ocgrp_subtype_abgrp
OGrp ⊆r AbGrp
Proof
Definitions occuring in Statement : 
ocgrp: OGrp
, 
abgrp: AbGrp
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
ocgrp: OGrp
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
abgrp: AbGrp
, 
grp: Group{i}
, 
uall: ∀[x:A]. B[x]
, 
mon: Mon
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
subtype_rel_sets, 
mon_wf, 
comm_wf, 
grp_car_wf, 
grp_op_wf, 
ulinorder_wf, 
assert_wf, 
grp_le_wf, 
equal_wf, 
bool_wf, 
grp_eq_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
bfalse_wf, 
cancel_wf, 
monot_wf, 
inverse_wf, 
grp_id_wf, 
grp_inv_wf, 
sq_stable__comm, 
ocgrp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
cut, 
hypothesisEquality, 
applyEquality, 
thin, 
sqequalRule, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setEquality, 
hypothesis, 
cumulativity, 
setElimination, 
rename, 
because_Cache, 
productEquality, 
inhabitedIsType, 
universeIsType, 
functionEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productElimination, 
isectEquality, 
setIsType, 
productIsType, 
equalityIstype, 
functionIsType, 
isectIsType, 
lambdaFormation_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
OGrp  \msubseteq{}r  AbGrp
Date html generated:
2020_05_19-PM-10_07_51
Last ObjectModification:
2020_01_08-PM-05_59_42
Theory : groups_1
Home
Index