Nuprl Lemma : ocmon_subtype_abdmonoid

OCMon ⊆AbDMon


Proof




Definitions occuring in Statement :  ocmon: OCMon abdmonoid: AbDMon subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T ocmon: OCMon abmonoid: AbMon abdmonoid: AbDMon dmon: DMon uall: [x:A]. B[x] mon: Mon prop: so_lambda: λ2x.t[x] all: x:A. B[x] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff infix_ap: y so_apply: x[s] cand: c∧ B omon: OMon sq_stable: SqStable(P) squash: T
Lemmas referenced :  subtype_rel_sets mon_wf comm_wf grp_car_wf grp_op_wf eqfun_p_wf grp_eq_wf ulinorder_wf assert_wf infix_ap_wf bool_wf grp_le_wf equal_wf eqtt_to_assert cancel_wf uall_wf monot_wf omon_properties set_wf sq_stable__comm ocmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality cut hypothesisEquality applyEquality sqequalRule thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination setEquality hypothesis cumulativity setElimination rename because_Cache lambdaFormation productEquality universeEquality functionEquality unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_pairFormation dependent_set_memberEquality imageMemberEquality baseClosed imageElimination

Latex:
OCMon  \msubseteq{}r  AbDMon



Date html generated: 2017_10_01-AM-08_14_28
Last ObjectModification: 2017_02_28-PM-01_58_58

Theory : groups_1


Home Index