Nuprl Lemma : ocmon_subtype_abdmonoid
OCMon ⊆r AbDMon
Proof
Definitions occuring in Statement : 
ocmon: OCMon
, 
abdmonoid: AbDMon
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
uall: ∀[x:A]. B[x]
, 
mon: Mon
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
bfalse: ff
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
omon: OMon
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
subtype_rel_sets, 
mon_wf, 
comm_wf, 
grp_car_wf, 
grp_op_wf, 
eqfun_p_wf, 
grp_eq_wf, 
ulinorder_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_le_wf, 
equal_wf, 
eqtt_to_assert, 
cancel_wf, 
uall_wf, 
monot_wf, 
omon_properties, 
set_wf, 
sq_stable__comm, 
ocmon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
cut, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setEquality, 
hypothesis, 
cumulativity, 
setElimination, 
rename, 
because_Cache, 
lambdaFormation, 
productEquality, 
universeEquality, 
functionEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
OCMon  \msubseteq{}r  AbDMon
Date html generated:
2017_10_01-AM-08_14_28
Last ObjectModification:
2017_02_28-PM-01_58_58
Theory : groups_1
Home
Index