Nuprl Lemma : qle_antisymmetry

[a,b:ℚ].  (a b ∈ ℚsupposing ((b ≤ a) and (a ≤ b))


Proof




Definitions occuring in Statement :  qle: r ≤ s rationals: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) uimplies: supposing a qle: r ≤ s grp_leq: a ≤ b infix_ap: y guard: {T}
Lemmas referenced :  grp_leq_antisymmetry qadd_grp_wf2 ocgrp_subtype_ocmon istype-assert grp_le_wf mon_subtype_grp_sig dmon_subtype_mon abdmonoid_dmon ocmon_subtype_abdmonoid subtype_rel_transitivity ocgrp_wf ocmon_wf abdmonoid_wf dmon_wf mon_wf grp_sig_wf rationals_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule isect_memberFormation_alt instantiate independent_isectElimination hypothesisEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType because_Cache universeIsType

Latex:
\mforall{}[a,b:\mBbbQ{}].    (a  =  b)  supposing  ((b  \mleq{}  a)  and  (a  \mleq{}  b))



Date html generated: 2020_05_20-AM-09_15_14
Last ObjectModification: 2020_02_03-PM-02_53_53

Theory : rationals


Home Index