Nuprl Lemma : qle_antisymmetry
∀[a,b:ℚ].  (a = b ∈ ℚ) supposing ((b ≤ a) and (a ≤ b))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
qadd_grp: <ℚ+>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
uimplies: b supposing a
, 
qle: r ≤ s
, 
grp_leq: a ≤ b
, 
infix_ap: x f y
, 
guard: {T}
Lemmas referenced : 
grp_leq_antisymmetry, 
qadd_grp_wf2, 
ocgrp_subtype_ocmon, 
istype-assert, 
grp_le_wf, 
mon_subtype_grp_sig, 
dmon_subtype_mon, 
abdmonoid_dmon, 
ocmon_subtype_abdmonoid, 
subtype_rel_transitivity, 
ocgrp_wf, 
ocmon_wf, 
abdmonoid_wf, 
dmon_wf, 
mon_wf, 
grp_sig_wf, 
rationals_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
sqequalRule, 
isect_memberFormation_alt, 
instantiate, 
independent_isectElimination, 
hypothesisEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
because_Cache, 
universeIsType
Latex:
\mforall{}[a,b:\mBbbQ{}].    (a  =  b)  supposing  ((b  \mleq{}  a)  and  (a  \mleq{}  b))
Date html generated:
2020_05_20-AM-09_15_14
Last ObjectModification:
2020_02_03-PM-02_53_53
Theory : rationals
Home
Index