Nuprl Lemma : qmul_preserves_qle

[a,b,c:ℚ].  uiff(a ≤ b;(c a) ≤ (c b)) supposing 0 < c


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s qmul: s rationals: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] prop: implies:  Q all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q squash: T true: True subtype_rel: A ⊆B sq_stable: SqStable(P) not: ¬A guard: {T} false: False
Lemmas referenced :  qless_wf qmul_wf iff_weakening_uiff qle_wf equal_wf rationals_wf qle-iff qle_witness qmul_preserves_qless int-subtype-rationals sq_stable_from_decidable decidable__or decidable__qless decidable__equal_rationals qmul-preserves-eq qless_transitivity_2_qorder qle_weakening_eq_qorder qless_irreflexivity
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation_alt sqequalRule unionIsType universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis equalityIstype inhabitedIsType because_Cache productElimination independent_isectElimination unionEquality independent_functionElimination dependent_functionElimination promote_hyp unionElimination inlFormation_alt inrFormation_alt applyEquality lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed closedConclusion independent_pairEquality isect_memberEquality_alt isectIsTypeImplies lambdaFormation_alt voidElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    uiff(a  \mleq{}  b;(c  *  a)  \mleq{}  (c  *  b))  supposing  0  <  c



Date html generated: 2020_05_20-AM-09_16_17
Last ObjectModification: 2020_02_26-AM-09_59_19

Theory : rationals


Home Index