Nuprl Lemma : qmul_preserves_qle
∀[a,b,c:ℚ].  uiff(a ≤ b;(c * a) ≤ (c * b)) supposing 0 < c
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
qless: r < s
, 
qmul: r * s
, 
rationals: ℚ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
not: ¬A
, 
guard: {T}
, 
false: False
Lemmas referenced : 
qless_wf, 
qmul_wf, 
iff_weakening_uiff, 
qle_wf, 
equal_wf, 
rationals_wf, 
qle-iff, 
qle_witness, 
qmul_preserves_qless, 
int-subtype-rationals, 
sq_stable_from_decidable, 
decidable__or, 
decidable__qless, 
decidable__equal_rationals, 
qmul-preserves-eq, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation_alt, 
sqequalRule, 
unionIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
equalityIstype, 
inhabitedIsType, 
because_Cache, 
productElimination, 
independent_isectElimination, 
unionEquality, 
independent_functionElimination, 
dependent_functionElimination, 
promote_hyp, 
unionElimination, 
inlFormation_alt, 
inrFormation_alt, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
closedConclusion, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
lambdaFormation_alt, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    uiff(a  \mleq{}  b;(c  *  a)  \mleq{}  (c  *  b))  supposing  0  <  c
Date html generated:
2020_05_20-AM-09_16_17
Last ObjectModification:
2020_02_26-AM-09_59_19
Theory : rationals
Home
Index