Nuprl Lemma : qless_wf
∀[r,s:ℚ].  (r < s ∈ ℙ)
Proof
Definitions occuring in Statement : 
qless: r < s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
qless: r < s
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
ocgrp: OGrp
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
qadd_grp: <ℚ+>
, 
grp_car: |g|
, 
pi1: fst(t)
Lemmas referenced : 
grp_lt_wf, 
qadd_grp_wf2, 
ocgrp_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[r,s:\mBbbQ{}].    (r  <  s  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-10_45_04
Last ObjectModification:
2015_12_27-PM-07_53_53
Theory : rationals
Home
Index