Nuprl Lemma : qmul_preserves_qless

[a,b,c:ℚ].  uiff(a < b;c a < b) supposing 0 < c


Proof




Definitions occuring in Statement :  qless: r < s qmul: s rationals: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q implies:  Q prop: subtype_rel: A ⊆B guard: {T} rev_uimplies: rev_uimplies(P;Q) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q qsub: s all: x:A. B[x] or: P ∨ Q cand: c∧ B not: ¬A false: False
Lemmas referenced :  qless_witness qmul_wf qless_wf int-subtype-rationals rationals_wf qadd_preserves_qless qadd_wf squash_wf true_wf qmul_comm_qrng qadd_comm_q qinverse_q iff_weakening_equal equal_wf qsub_wf qadd_com qmul_assoc_qrng q_distrib qmul-positive qadd_inv_assoc_q mon_ident_q uiff_transitivity2 qminus_positive assert-qpositive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination sqequalRule productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry natural_numberEquality applyEquality minusEquality independent_isectElimination lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality hyp_replacement applyLambdaEquality dependent_functionElimination inlFormation productEquality unionElimination lambdaFormation promote_hyp voidElimination

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    uiff(a  <  b;c  *  a  <  c  *  b)  supposing  0  <  c



Date html generated: 2018_05_21-PM-11_56_20
Last ObjectModification: 2017_07_26-PM-06_46_51

Theory : rationals


Home Index