Nuprl Lemma : qinverse_q

[a:ℚ]. (((a -(a)) 0 ∈ ℚ) ∧ ((-(a) a) 0 ∈ ℚ))


Proof




Definitions occuring in Statement :  qmul: s qadd: s rationals: uall: [x:A]. B[x] and: P ∧ Q minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) grp_inv: ~ grp_id: e infix_ap: y
Lemmas referenced :  grp_inverse qadd_grp_wf grp_subtype_igrp abgrp_subtype_grp subtype_rel_transitivity abgrp_wf grp_wf igrp_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality instantiate independent_isectElimination sqequalRule

Latex:
\mforall{}[a:\mBbbQ{}].  (((a  +  -(a))  =  0)  \mwedge{}  ((-(a)  +  a)  =  0))



Date html generated: 2020_05_20-AM-09_13_48
Last ObjectModification: 2020_01_25-AM-09_03_20

Theory : rationals


Home Index