Nuprl Lemma : assert-qpositive

[r:ℚ]. uiff(↑qpositive(r);0 < r)


Proof




Definitions occuring in Statement :  qless: r < s qpositive: qpositive(r) rationals: assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] exists: x:A. B[x] nat_plus: + cand: c∧ B not: ¬A implies:  Q subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q int_nzero: -o nequal: a ≠ b ∈  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False prop: qless: r < s qpositive: qpositive(r) grp_lt: a < b set_lt: a <b set_blt: a <b b oset_of_ocmon: g↓oset dset_of_mon: g↓set set_le: b pi2: snd(t) qadd_grp: <ℚ+> grp_le: b pi1: fst(t) infix_ap: y q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) qeq: qeq(r;s) qsub: s qmul: s ifthenelse: if then else fi  btrue: tt qadd: s so_lambda: λ2x.t[x] so_apply: x[s] has-value: (a)↓ has-valueall: has-valueall(a) bfalse: ff uiff: uiff(P;Q) bool: 𝔹 unit: Unit it: band: p ∧b q or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q bor: p ∨bq true: True
Lemmas referenced :  q-elim nat_plus_properties iff_weakening_uiff assert_wf qeq_wf2 int-subtype-rationals equal-wf-base rationals_wf int_subtype_base assert-qeq istype-assert qdiv-int-elim full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf nequal_wf valueall-type-has-valueall product-valueall-type int-valueall-type evalall-reduce uiff_wf qpositive_wf qless_wf qless_witness assert_witness lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot less_than_wf intformnot_wf int_formula_prop_not_lemma istype-less_than eq_int_wf assert_of_eq_int neg_assert_of_eq_int itermMultiply_wf int_term_value_mul_lemma istype-true istype-void zero-mul add-zero zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination hypothesis setElimination rename lambdaFormation_alt independent_functionElimination applyEquality sqequalRule closedConclusion natural_numberEquality baseClosed because_Cache dependent_set_memberEquality_alt independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination equalityIstype inhabitedIsType sqequalBase equalitySymmetry intEquality callbyvalueReduce sqleReflexivity isintReduceTrue minusEquality productEquality independent_pairEquality addEquality multiplyEquality hyp_replacement applyLambdaEquality isect_memberEquality_alt isectIsTypeImplies unionElimination equalityElimination equalityTransitivity promote_hyp instantiate cumulativity axiomEquality

Latex:
\mforall{}[r:\mBbbQ{}].  uiff(\muparrow{}qpositive(r);0  <  r)



Date html generated: 2020_05_20-AM-09_15_47
Last ObjectModification: 2020_01_31-AM-10_36_03

Theory : rationals


Home Index