Nuprl Lemma : assert-qpositive
∀[r:ℚ]. uiff(↑qpositive(r);0 < r)
Proof
Definitions occuring in Statement : 
qless: r < s
, 
qpositive: qpositive(r)
, 
rationals: ℚ
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
prop: ℙ
, 
qless: r < s
, 
qpositive: qpositive(r)
, 
grp_lt: a < b
, 
set_lt: a <p b
, 
set_blt: a <b b
, 
oset_of_ocmon: g↓oset
, 
dset_of_mon: g↓set
, 
set_le: ≤b
, 
pi2: snd(t)
, 
qadd_grp: <ℚ+>
, 
grp_le: ≤b
, 
pi1: fst(t)
, 
infix_ap: x f y
, 
q_le: q_le(r;s)
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
qeq: qeq(r;s)
, 
qsub: r - s
, 
qmul: r * s
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
qadd: r + s
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
band: p ∧b q
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
bor: p ∨bq
, 
true: True
Lemmas referenced : 
q-elim, 
nat_plus_properties, 
iff_weakening_uiff, 
assert_wf, 
qeq_wf2, 
int-subtype-rationals, 
equal-wf-base, 
rationals_wf, 
int_subtype_base, 
assert-qeq, 
istype-assert, 
qdiv-int-elim, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
nequal_wf, 
valueall-type-has-valueall, 
product-valueall-type, 
int-valueall-type, 
evalall-reduce, 
uiff_wf, 
qpositive_wf, 
qless_wf, 
qless_witness, 
assert_witness, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-less_than, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
istype-true, 
istype-void, 
zero-mul, 
add-zero, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
isectElimination, 
hypothesis, 
setElimination, 
rename, 
lambdaFormation_alt, 
independent_functionElimination, 
applyEquality, 
sqequalRule, 
closedConclusion, 
natural_numberEquality, 
baseClosed, 
because_Cache, 
dependent_set_memberEquality_alt, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
equalityIstype, 
inhabitedIsType, 
sqequalBase, 
equalitySymmetry, 
intEquality, 
callbyvalueReduce, 
sqleReflexivity, 
isintReduceTrue, 
minusEquality, 
productEquality, 
independent_pairEquality, 
addEquality, 
multiplyEquality, 
hyp_replacement, 
applyLambdaEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
promote_hyp, 
instantiate, 
cumulativity, 
axiomEquality
Latex:
\mforall{}[r:\mBbbQ{}].  uiff(\muparrow{}qpositive(r);0  <  r)
Date html generated:
2020_05_20-AM-09_15_47
Last ObjectModification:
2020_01_31-AM-10_36_03
Theory : rationals
Home
Index