Nuprl Lemma : q-elim

r:ℚ. ∃p:ℤ. ∃q:ℕ+((¬(q 0 ∈ ℚ)) c∧ (r (p/q) ∈ ℚ))


Proof




Definitions occuring in Statement :  qdiv: (r/s) rationals: nat_plus: + cand: c∧ B all: x:A. B[x] exists: x:A. B[x] not: ¬A natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] cand: c∧ B subtype_rel: A ⊆B nat_plus: + so_apply: x[s] uimplies: supposing a implies:  Q qdiv: (r/s) qinv: 1/r qmul: s callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt bfalse: ff exists: x:A. B[x] not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q uiff: uiff(P;Q)
Lemmas referenced :  equals-qrep exists_wf nat_plus_wf not_wf equal-wf-T-base subtype_rel_set rationals_wf less_than_wf int-subtype-rationals equal_wf qdiv_wf qrep_wf valueall-type-has-valueall int-valueall-type evalall-reduce set-valueall-type product-valueall-type mul-one nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf int-equal-in-rationals
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality equalitySymmetry hypothesis hyp_replacement applyLambdaEquality intEquality sqequalRule lambdaEquality productEquality because_Cache applyEquality natural_numberEquality independent_isectElimination baseClosed productElimination equalityTransitivity dependent_functionElimination independent_functionElimination callbyvalueReduce isintReduceTrue setElimination rename independent_pairEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll addLevel impliesFunctionality

Latex:
\mforall{}r:\mBbbQ{}.  \mexists{}p:\mBbbZ{}.  \mexists{}q:\mBbbN{}\msupplus{}.  ((\mneg{}(q  =  0))  c\mwedge{}  (r  =  (p/q)))



Date html generated: 2018_05_21-PM-11_47_42
Last ObjectModification: 2017_07_26-PM-06_43_12

Theory : rationals


Home Index