Nuprl Lemma : q-elim
∀r:ℚ. ∃p:ℤ. ∃q:ℕ+. ((¬(q = 0 ∈ ℚ)) c∧ (r = (p/q) ∈ ℚ))
Proof
Definitions occuring in Statement : 
qdiv: (r/s)
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
qdiv: (r/s)
, 
qinv: 1/r
, 
qmul: r * s
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
Lemmas referenced : 
equals-qrep, 
exists_wf, 
nat_plus_wf, 
not_wf, 
equal-wf-T-base, 
subtype_rel_set, 
rationals_wf, 
less_than_wf, 
int-subtype-rationals, 
equal_wf, 
qdiv_wf, 
qrep_wf, 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
set-valueall-type, 
product-valueall-type, 
mul-one, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
int-equal-in-rationals
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalitySymmetry, 
hypothesis, 
hyp_replacement, 
applyLambdaEquality, 
intEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
because_Cache, 
applyEquality, 
natural_numberEquality, 
independent_isectElimination, 
baseClosed, 
productElimination, 
equalityTransitivity, 
dependent_functionElimination, 
independent_functionElimination, 
callbyvalueReduce, 
isintReduceTrue, 
setElimination, 
rename, 
independent_pairEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}r:\mBbbQ{}.  \mexists{}p:\mBbbZ{}.  \mexists{}q:\mBbbN{}\msupplus{}.  ((\mneg{}(q  =  0))  c\mwedge{}  (r  =  (p/q)))
Date html generated:
2018_05_21-PM-11_47_42
Last ObjectModification:
2017_07_26-PM-06_43_12
Theory : rationals
Home
Index