Nuprl Lemma : equals-qrep

[r:ℚ]. (qrep(r) r ∈ ℚ)


Proof




Definitions occuring in Statement :  qrep: qrep(r) rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B rationals: so_lambda: λ2y.t[x; y] guard: {T} so_apply: x[s1;s2] uimplies: supposing a implies:  Q pi2: snd(t) so_apply: x[s] so_lambda: λ2x.t[x] bfalse: ff ifthenelse: if then else fi  tunion: x:A.B[x] b-union: A ⋃ B istype: istype(T) rev_implies:  Q iff: ⇐⇒ Q true: True prop: squash: T and: P ∧ Q quotient: x,y:A//B[x; y]
Lemmas referenced :  qeq_wf qeq-qrep subtype_quotient equal-wf-T-base bool_wf qeq-equiv qrep_wf quotient-member-eq b-union_wf int_nzero_wf rationals_wf ifthenelse_wf nat_plus_inc_int_nzero istype-int nat_plus_wf subtype_rel_product bfalse_wf quotient_wf equal_functionality_wrt_subtype_rel2 subtype_rel_self iff_weakening_equal istype-universe true_wf squash_wf equal_wf qeq_refl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid lambdaFormation_alt sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule because_Cache lambdaEquality_alt hypothesis baseClosed inhabitedIsType independent_isectElimination equalitySymmetry dependent_functionElimination independent_functionElimination universeIsType intEquality productEquality universeEquality instantiate equalityTransitivity dependent_pairEquality_alt imageMemberEquality closedConclusion natural_numberEquality imageElimination productIsType productElimination pertypeElimination pointwiseFunctionality sqequalBase equalityIstype promote_hyp

Latex:
\mforall{}[r:\mBbbQ{}].  (qrep(r)  =  r)



Date html generated: 2019_10_16-AM-11_47_44
Last ObjectModification: 2019_06_25-PM-00_20_49

Theory : rationals


Home Index