Nuprl Lemma : equals-qrep
∀[r:ℚ]. (qrep(r) = r ∈ ℚ)
Proof
Definitions occuring in Statement : 
qrep: qrep(r)
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
rationals: ℚ
, 
so_lambda: λ2x y.t[x; y]
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
pi2: snd(t)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
tunion: ⋃x:A.B[x]
, 
b-union: A ⋃ B
, 
istype: istype(T)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
, 
and: P ∧ Q
, 
quotient: x,y:A//B[x; y]
Lemmas referenced : 
qeq_wf, 
qeq-qrep, 
subtype_quotient, 
equal-wf-T-base, 
bool_wf, 
qeq-equiv, 
qrep_wf, 
quotient-member-eq, 
b-union_wf, 
int_nzero_wf, 
rationals_wf, 
ifthenelse_wf, 
nat_plus_inc_int_nzero, 
istype-int, 
nat_plus_wf, 
subtype_rel_product, 
bfalse_wf, 
quotient_wf, 
equal_functionality_wrt_subtype_rel2, 
subtype_rel_self, 
iff_weakening_equal, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
qeq_refl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
lambdaEquality_alt, 
hypothesis, 
baseClosed, 
inhabitedIsType, 
independent_isectElimination, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
intEquality, 
productEquality, 
universeEquality, 
instantiate, 
equalityTransitivity, 
dependent_pairEquality_alt, 
imageMemberEquality, 
closedConclusion, 
natural_numberEquality, 
imageElimination, 
productIsType, 
productElimination, 
pertypeElimination, 
pointwiseFunctionality, 
sqequalBase, 
equalityIstype, 
promote_hyp
Latex:
\mforall{}[r:\mBbbQ{}].  (qrep(r)  =  r)
Date html generated:
2019_10_16-AM-11_47_44
Last ObjectModification:
2019_06_25-PM-00_20_49
Theory : rationals
Home
Index