Nuprl Lemma : qeq-qrep

[r:ℚ]. qeq(r;qrep(r)) tt


Proof




Definitions occuring in Statement :  qrep: qrep(r) rationals: qeq: qeq(r;s) btrue: tt bool: 𝔹 uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] rationals: member: t ∈ T quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q prop: b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) qrep: qrep(r) qeq: qeq(r;s) uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B int_nzero: -o bfalse: ff spreadn: spread3 it: uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A le: A ≤ B squash: T decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top true: True iff: ⇐⇒ Q rev_implies:  Q nat: ge: i ≥  nequal: a ≠ b ∈ 
Lemmas referenced :  bool_wf b-union_wf int_nzero_wf equal_wf equal-wf-base equal-wf-T-base qeq_wf rationals_wf valueall-type-has-valueall int-valueall-type evalall-reduce product-valueall-type evalall-sqequal int_subtype_base set-valueall-type nequal_wf le_int_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf set_subtype_base eq_int_eq_true decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermMultiply_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf btrue_wf iff_weakening_equal gcd_reduce_property gcd_reduce_wf nat_wf squash_wf true_wf equal-wf-base-T coprime_wf nat_properties int_nzero_properties intformand_wf itermMinus_wf int_formula_prop_and_lemma int_term_value_minus_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalHypSubstitution pointwiseFunctionalityForEquality cut introduction extract_by_obid hypothesis sqequalRule pertypeElimination productElimination thin equalityTransitivity equalitySymmetry isectElimination intEquality productEquality lambdaFormation hypothesisEquality dependent_functionElimination independent_functionElimination because_Cache baseClosed imageElimination unionElimination equalityElimination independent_isectElimination callbyvalueReduce isintReduceTrue lambdaEquality independent_pairEquality natural_numberEquality baseApply closedConclusion applyEquality dependent_pairFormation promote_hyp instantiate cumulativity voidElimination minusEquality multiplyEquality int_eqEquality isect_memberEquality voidEquality computeAll imageMemberEquality universeEquality setElimination rename independent_pairFormation

Latex:
\mforall{}[r:\mBbbQ{}].  qeq(r;qrep(r))  =  tt



Date html generated: 2018_05_21-PM-11_47_34
Last ObjectModification: 2017_07_26-PM-06_43_10

Theory : rationals


Home Index