Nuprl Lemma : qeq-qrep
∀[r:ℚ]. qeq(r;qrep(r)) = tt
Proof
Definitions occuring in Statement : 
qrep: qrep(r)
, 
rationals: ℚ
, 
qeq: qeq(r;s)
, 
btrue: tt
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
rationals: ℚ
, 
member: t ∈ T
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
b-union: A ⋃ B
, 
tunion: ⋃x:A.B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
qrep: qrep(r)
, 
qeq: qeq(r;s)
, 
uimplies: b supposing a
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
btrue: tt
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
int_nzero: ℤ-o
, 
bfalse: ff
, 
spreadn: spread3, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
le: A ≤ B
, 
squash: ↓T
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
bool_wf, 
b-union_wf, 
int_nzero_wf, 
equal_wf, 
equal-wf-base, 
equal-wf-T-base, 
qeq_wf, 
rationals_wf, 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
product-valueall-type, 
evalall-sqequal, 
int_subtype_base, 
set-valueall-type, 
nequal_wf, 
le_int_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
set_subtype_base, 
eq_int_eq_true, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
btrue_wf, 
iff_weakening_equal, 
gcd_reduce_property, 
gcd_reduce_wf, 
nat_wf, 
squash_wf, 
true_wf, 
equal-wf-base-T, 
coprime_wf, 
nat_properties, 
int_nzero_properties, 
intformand_wf, 
itermMinus_wf, 
int_formula_prop_and_lemma, 
int_term_value_minus_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
intEquality, 
productEquality, 
lambdaFormation, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
baseClosed, 
imageElimination, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
callbyvalueReduce, 
isintReduceTrue, 
lambdaEquality, 
independent_pairEquality, 
natural_numberEquality, 
baseApply, 
closedConclusion, 
applyEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
minusEquality, 
multiplyEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
imageMemberEquality, 
universeEquality, 
setElimination, 
rename, 
independent_pairFormation
Latex:
\mforall{}[r:\mBbbQ{}].  qeq(r;qrep(r))  =  tt
Date html generated:
2018_05_21-PM-11_47_34
Last ObjectModification:
2017_07_26-PM-06_43_10
Theory : rationals
Home
Index