Nuprl Lemma : gcd_reduce_wf
∀[p,q:ℤ].  (gcd_reduce(p;q) ∈ ℕ × ℤ × ℤ)
Proof
Definitions occuring in Statement : 
gcd_reduce: gcd_reduce(p;q)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
gcd_reduce: gcd_reduce(p;q)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
nat: ℕ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
spreadn: spread4
Lemmas referenced : 
gcd-reduce-ext, 
subtype_rel_self, 
all_wf, 
exists_wf, 
nat_wf, 
equal-wf-base-T, 
int_subtype_base, 
equal-wf-base, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
intEquality, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
multiplyEquality, 
setElimination, 
rename, 
because_Cache, 
baseApply, 
closedConclusion, 
baseClosed, 
lambdaFormation, 
spreadEquality, 
productElimination, 
dependent_pairEquality, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[p,q:\mBbbZ{}].    (gcd\_reduce(p;q)  \mmember{}  \mBbbN{}  \mtimes{}  \mBbbZ{}  \mtimes{}  \mBbbZ{})
Date html generated:
2018_05_21-PM-00_59_30
Last ObjectModification:
2018_05_19-AM-06_35_44
Theory : num_thy_1
Home
Index