Nuprl Lemma : gcd-reduce-ext
∀p,q:ℤ.  ∃g:ℕ. ∃a,b,x,y:ℤ. ((p = (a * g) ∈ ℤ) ∧ (q = (b * g) ∈ ℤ) ∧ (((x * a) + (y * b)) = 1 ∈ ℤ))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
remainder: n rem m
, 
divide: n ÷ m
, 
subtract: n - m
, 
so_apply: x[s1;s2]
, 
natrec: natrec, 
genrec: genrec, 
genrec-ap: genrec-ap, 
spreadn: spread7, 
gcd-reduce, 
decidable__equal_int, 
decidable__int_equal, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
gcd-reduce, 
lifting-strict-int_eq, 
istype-void, 
strict4-decide, 
lifting-strict-spread, 
has-value_wf_base, 
istype-base, 
is-exception_wf, 
decidable__equal_int, 
decidable__int_equal
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
Error :universeIsType, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
callbyvalueExceptionCases, 
Error :inrFormation_alt, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
Error :inlFormation_alt, 
Error :inhabitedIsType, 
sqequalSqle, 
divergentSqle, 
callbyvalueSpread, 
productElimination, 
sqleReflexivity, 
Error :equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
spreadExceptionCases, 
axiomSqleEquality
Latex:
\mforall{}p,q:\mBbbZ{}.    \mexists{}g:\mBbbN{}.  \mexists{}a,b,x,y:\mBbbZ{}.  ((p  =  (a  *  g))  \mwedge{}  (q  =  (b  *  g))  \mwedge{}  (((x  *  a)  +  (y  *  b))  =  1))
Date html generated:
2019_06_20-PM-02_27_15
Last ObjectModification:
2019_03_10-PM-02_40_50
Theory : num_thy_1
Home
Index