Nuprl Lemma : gcd_reduce_property
∀p,q:ℤ.  let g,a,b = gcd_reduce(p;q) in (p = (a * g) ∈ ℤ) ∧ (q = (b * g) ∈ ℤ) ∧ CoPrime(a,b) ∧ ((p * b) = (a * q) ∈ ℤ)
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
gcd_reduce: gcd_reduce(p;q)
, 
coprime: CoPrime(a,b)
, 
spreadn: spread3, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
spreadn: spread3, 
spreadn: spread4, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
gcd_reduce: gcd_reduce(p;q)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
iff_weakening_equal, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__equal_int, 
nat_properties, 
coprime_bezout_id, 
istype-int, 
le_wf, 
set_subtype_base, 
int_subtype_base, 
equal-wf-base, 
nat_wf, 
subtype_rel_self, 
gcd-reduce-ext
Rules used in proof : 
imageMemberEquality, 
multiplyEquality, 
universeEquality, 
imageElimination, 
Error :productIsType, 
sqequalBase, 
Error :universeIsType, 
voidElimination, 
Error :isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
unionElimination, 
rename, 
setElimination, 
Error :dependent_pairFormation_alt, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
Error :equalityIstype, 
independent_pairFormation, 
productElimination, 
because_Cache, 
independent_isectElimination, 
Error :inhabitedIsType, 
natural_numberEquality, 
Error :lambdaEquality_alt, 
baseClosed, 
closedConclusion, 
baseApply, 
hypothesisEquality, 
productEquality, 
intEquality, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
introduction, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
cut, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}p,q:\mBbbZ{}.
    let  g,a,b  =  gcd\_reduce(p;q)  in 
    (p  =  (a  *  g))  \mwedge{}  (q  =  (b  *  g))  \mwedge{}  CoPrime(a,b)  \mwedge{}  ((p  *  b)  =  (a  *  q))
Date html generated:
2019_06_20-PM-02_27_19
Last ObjectModification:
2019_06_19-PM-02_32_40
Theory : num_thy_1
Home
Index