Nuprl Lemma : qrep_wf

[r:ℚ]. (qrep(r) ∈ ℤ × ℕ+)


Proof




Definitions occuring in Statement :  qrep: qrep(r) rationals: nat_plus: + uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rationals: quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit ifthenelse: if then else fi  pi2: snd(t) qrep: qrep(r) qeq: qeq(r;s) uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o bfalse: ff btrue: tt iff: ⇐⇒ Q false: False prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) nat_plus: + nat: spreadn: spread3 ge: i ≥  coprime: CoPrime(a,b) guard: {T} sq_type: SQType(T) nequal: a ≠ b ∈  cand: c∧ B gcd_p: GCD(a;b;y) it: uiff: uiff(P;Q) less_than': less_than'(a;b) squash: T less_than: a < b rev_implies:  Q gt: i > j pi1: fst(t) true: True assert: b bnot: ¬bb
Lemmas referenced :  nat_plus_wf bool_wf qeq_wf btrue_wf b-union_wf int_nzero_wf rationals_wf valueall-type-has-valueall int-valueall-type evalall-reduce assert_wf eq_int_wf equal-wf-base int_subtype_base istype-assert product-valueall-type set-valueall-type nequal_wf set_subtype_base iff_weakening_uiff assert_of_eq_int eqtt_to_assert istype-less_than int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_less_lemma istype-void int_formula_prop_not_lemma istype-int itermConstant_wf intformless_wf intformnot_wf full-omega-unsat decidable__lt coprime_wf le_wf gcd_reduce_wf gcd_reduce_property decidable__equal_int nat_properties int_nzero_properties mul_cancel_in_eq int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma itermMultiply_wf itermVar_wf intformeq_wf intformand_wf subtype_base_sq divides_wf one_divs_any bnot_wf less_than_wf lt_int_wf le_int_wf uiff_transitivity assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int int_formula_prop_le_lemma intformle_wf coprime-equiv-unique-pair int_formula_prop_or_lemma int_formual_prop_imp_lemma intformor_wf intformimplies_wf neg_mul_arg_bounds pi1_wf_top pi2_wf minus-minus divides_invar_2 int_term_value_minus_lemma itermMinus_wf pos_mul_arg_bounds istype-universe true_wf squash_wf equal_wf mul_nzero mul-associates mul-swap mul-commutes subtype_rel_self iff_weakening_equal istype-le assert-bnot bool_subtype_base bool_cases_sqequal ifthenelse_wf gt_wf product_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality productEquality intEquality thin extract_by_obid hypothesis sqequalRule pertypeElimination promote_hyp productElimination equalityTransitivity equalitySymmetry inhabitedIsType lambdaFormation_alt imageElimination unionElimination equalityElimination independent_functionElimination equalityIstype universeIsType isectElimination hypothesisEquality dependent_functionElimination productIsType because_Cache sqequalBase axiomEquality independent_isectElimination callbyvalueReduce applyEquality baseApply closedConclusion baseClosed lambdaEquality_alt natural_numberEquality independent_pairEquality multiplyEquality setElimination rename isintReduceTrue voidElimination isect_memberEquality_alt dependent_pairFormation_alt approximateComputation dependent_set_memberEquality_alt applyLambdaEquality independent_pairFormation int_eqEquality cumulativity instantiate minusEquality imageMemberEquality Error :memTop,  universeEquality hyp_replacement functionIsType inlFormation_alt inrFormation_alt

Latex:
\mforall{}[r:\mBbbQ{}].  (qrep(r)  \mmember{}  \mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})



Date html generated: 2020_05_20-AM-09_13_13
Last ObjectModification: 2019_12_31-PM-04_58_21

Theory : rationals


Home Index