Nuprl Lemma : coprime-equiv-unique-pair
∀[p:ℤ]. ∀[q:ℤ-o]. ∀[a,b:ℤ].
(<p, q> = <a, b> ∈ (ℤ × ℤ-o)) supposing
((q < 0
⇐⇒ b < 0) and
(p < 0
⇐⇒ a < 0) and
((p * b) = (a * q) ∈ ℤ) and
CoPrime(a,b) and
CoPrime(p,q))
Proof
Definitions occuring in Statement :
coprime: CoPrime(a,b)
,
int_nzero: ℤ-o
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
pair: <a, b>
,
product: x:A × B[x]
,
multiply: n * m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
int_nzero: ℤ-o
,
implies: P
⇒ Q
,
rev_implies: P
⇐ Q
,
nequal: a ≠ b ∈ T
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
top: Top
,
prop: ℙ
,
guard: {T}
Lemmas referenced :
int_nzero_wf,
coprime_wf,
iff_wf,
nequal_wf,
equal_wf,
int_formula_prop_eq_lemma,
intformeq_wf,
decidable__equal_int,
less_than_wf,
int_formula_prop_wf,
int_formual_prop_imp_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
intformimplies_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__lt,
int_nzero_properties,
coprime-equiv-unique
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
lemma_by_obid,
isectElimination,
hypothesisEquality,
setElimination,
rename,
independent_isectElimination,
hypothesis,
independent_pairFormation,
lambdaFormation,
dependent_functionElimination,
natural_numberEquality,
unionElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
computeAll,
independent_pairEquality,
dependent_set_memberEquality,
axiomEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
multiplyEquality
Latex:
\mforall{}[p:\mBbbZ{}]. \mforall{}[q:\mBbbZ{}\msupminus{}\msupzero{}]. \mforall{}[a,b:\mBbbZ{}].
(<p, q> = <a, b>) supposing
((q < 0 \mLeftarrow{}{}\mRightarrow{} b < 0) and
(p < 0 \mLeftarrow{}{}\mRightarrow{} a < 0) and
((p * b) = (a * q)) and
CoPrime(a,b) and
CoPrime(p,q))
Date html generated:
2016_05_15-PM-10_36_28
Last ObjectModification:
2016_01_16-PM-09_37_34
Theory : rationals
Home
Index