Nuprl Lemma : coprime-equiv-unique

[p,q,a,b:ℤ].
  ({(p a ∈ ℤ) ∧ (q b ∈ ℤ)}) supposing 
     ((q < ⇐⇒ b < 0) and 
     (p < ⇐⇒ a < 0) and 
     ((p b) (a q) ∈ ℤand 
     CoPrime(a,b) and 
     CoPrime(p,q))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] guard: {T} iff: ⇐⇒ Q and: P ∧ Q multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} and: P ∧ Q prop: subtype_rel: A ⊆B assoced: b cand: c∧ B all: x:A. B[x] iff: ⇐⇒ Q implies:  Q exists: x:A. B[x] divides: a decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top sq_type: SQType(T) squash: T true: True rev_implies:  Q coprime: CoPrime(a,b) gcd_p: GCD(a;b;y)
Lemmas referenced :  equal-wf-base coprime_wf iff_wf less_than_wf int_subtype_base coprime_bezout_id decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf subtype_base_sq equal_wf squash_wf true_wf mul_com iff_weakening_equal mul_add_distrib divides_wf intformand_wf int_formula_prop_and_lemma one_divs_any assoced_elim decidable__lt itermMinus_wf intformless_wf int_term_value_minus_lemma int_formula_prop_less_lemma intformimplies_wf int_formual_prop_imp_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality productElimination independent_pairEquality axiomEquality hypothesis because_Cache equalityTransitivity equalitySymmetry extract_by_obid intEquality baseApply closedConclusion baseClosed applyEquality natural_numberEquality independent_pairFormation dependent_functionElimination independent_functionElimination dependent_pairFormation addEquality multiplyEquality unionElimination independent_isectElimination lambdaEquality int_eqEquality voidElimination voidEquality computeAll instantiate cumulativity hyp_replacement imageElimination universeEquality imageMemberEquality rename lambdaFormation productEquality promote_hyp

Latex:
\mforall{}[p,q,a,b:\mBbbZ{}].
    (\{(p  =  a)  \mwedge{}  (q  =  b)\})  supposing 
          ((q  <  0  \mLeftarrow{}{}\mRightarrow{}  b  <  0)  and 
          (p  <  0  \mLeftarrow{}{}\mRightarrow{}  a  <  0)  and 
          ((p  *  b)  =  (a  *  q))  and 
          CoPrime(a,b)  and 
          CoPrime(p,q))



Date html generated: 2018_05_21-PM-11_43_31
Last ObjectModification: 2017_07_26-PM-06_42_53

Theory : rationals


Home Index