Nuprl Lemma : qmul_assoc_qrng

[a,b,c:ℚ].  ((a c) ((a b) c) ∈ ℚ)


Proof




Definitions occuring in Statement :  qmul: s rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) infix_ap: y
Lemmas referenced :  rng_times_assoc qrng_wf crng_subtype_rng
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    ((a  *  b  *  c)  =  ((a  *  b)  *  c))



Date html generated: 2020_05_20-AM-09_15_33
Last ObjectModification: 2020_02_04-PM-01_49_40

Theory : rationals


Home Index