Nuprl Lemma : qmul_assoc_qrng
∀[a,b,c:ℚ]. ((a * b * c) = ((a * b) * c) ∈ ℚ)
Proof
Definitions occuring in Statement :
qmul: r * s
,
rationals: ℚ
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
qrng: <ℚ+*>
,
rng_car: |r|
,
pi1: fst(t)
,
rng_times: *
,
pi2: snd(t)
,
infix_ap: x f y
Lemmas referenced :
rng_times_assoc,
qrng_wf,
crng_subtype_rng
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesis,
applyEquality,
sqequalRule
Latex:
\mforall{}[a,b,c:\mBbbQ{}]. ((a * b * c) = ((a * b) * c))
Date html generated:
2020_05_20-AM-09_15_33
Last ObjectModification:
2020_02_04-PM-01_49_40
Theory : rationals
Home
Index