Nuprl Lemma : qmul_comm_qrng

[a,b:ℚ].  ((a b) (b a) ∈ ℚ)


Proof




Definitions occuring in Statement :  qmul: s rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) infix_ap: y
Lemmas referenced :  crng_times_comm qrng_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule

Latex:
\mforall{}[a,b:\mBbbQ{}].    ((a  *  b)  =  (b  *  a))



Date html generated: 2020_05_20-AM-09_15_39
Last ObjectModification: 2020_02_03-PM-02_14_00

Theory : rationals


Home Index