Nuprl Lemma : qmul-preserves-eq

[a,b,c:ℚ].  uiff(a b ∈ ℚ;(c a) (c b) ∈ ℚsupposing ¬(c 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qmul: s rationals: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q prop: subtype_rel: A ⊆B true: True squash: T guard: {T} iff: ⇐⇒ Q implies:  Q
Lemmas referenced :  and_wf equal_wf rationals_wf qmul_wf not_wf equal-wf-T-base qdiv_wf int-subtype-rationals squash_wf true_wf qmul_comm_qrng qmul_ac_1_qrng qmul-qdiv-cancel2 qmul_one_qrng iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation equalitySymmetry dependent_set_memberEquality hypothesis hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyLambdaEquality setElimination rename productElimination hyp_replacement because_Cache sqequalRule independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity baseClosed natural_numberEquality applyEquality independent_isectElimination lambdaEquality imageElimination universeEquality imageMemberEquality independent_functionElimination

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    uiff(a  =  b;(c  *  a)  =  (c  *  b))  supposing  \mneg{}(c  =  0)



Date html generated: 2018_05_21-PM-11_51_03
Last ObjectModification: 2017_07_26-PM-06_44_18

Theory : rationals


Home Index