Nuprl Lemma : qmul_ac_1_qrng

[a,b,c:ℚ].  ((a c) (b c) ∈ ℚ)


Proof




Definitions occuring in Statement :  qmul: s rationals: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) infix_ap: y
Lemmas referenced :  crng_times_ac_1 qrng_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    ((a  *  b  *  c)  =  (b  *  a  *  c))



Date html generated: 2020_05_20-AM-09_15_42
Last ObjectModification: 2020_02_04-PM-01_57_03

Theory : rationals


Home Index