Nuprl Lemma : qmul_one_qrng

[a:ℚ]. (((a 1) a ∈ ℚ) ∧ ((1 a) a ∈ ℚ))


Proof




Definitions occuring in Statement :  qmul: s rationals: uall: [x:A]. B[x] and: P ∧ Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) rng_one: 1 infix_ap: y
Lemmas referenced :  rng_times_one qrng_wf crng_subtype_rng
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[a:\mBbbQ{}].  (((a  *  1)  =  a)  \mwedge{}  ((1  *  a)  =  a))



Date html generated: 2020_05_20-AM-09_15_36
Last ObjectModification: 2020_01_26-PM-00_02_17

Theory : rationals


Home Index