Nuprl Lemma : decidable__qless

a,b:ℚ.  Dec(a < b)


Proof




Definitions occuring in Statement :  qless: r < s rationals: decidable: Dec(P) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T qless: r < s grp_lt: a < b oset_of_ocmon: g↓oset set_lt: a <b dset_of_mon: g↓set set_blt: a <b b set_le: b pi2: snd(t) qadd_grp: <ℚ+> grp_le: b pi1: fst(t) infix_ap: y q_le: q_le(r;s) uall: [x:A]. B[x] uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) sq_type: SQType(T) implies:  Q guard: {T} squash: T prop: true: True subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb ifthenelse: if then else fi  assert: b false: False not: ¬A qsub: s bor: p ∨bq band: p ∧b q
Lemmas referenced :  valueall-type-has-valueall rationals_wf rationals-valueall-type evalall-reduce subtype_base_sq bool_wf bool_subtype_base equal_wf squash_wf true_wf qsub_wf qminus-qsub iff_weakening_equal band_wf bor_wf qpositive_wf qeq_wf2 bnot_wf eqtt_to_assert assert-qeq eqff_to_assert bool_cases_sqequal assert-bnot iff_imp_equal_bool btrue_wf qmul_wf bfalse_wf qless-int or_wf qless_wf not_wf false_wf iff_transitivity assert_wf iff_weakening_uiff assert_of_band assert_of_bor assert-qpositive int-subtype-rationals assert_of_bnot iff_wf qadd_wf qless_irreflexivity qmul_over_plus_qrng qinv_inv_q qadd_comm_q qinverse_q qadd_preserves_qless qadd_inv_assoc_q mon_ident_q qadd_ac_1_q qless_transitivity member-decide-assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction sqequalRule cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination hypothesisEquality callbyvalueReduce because_Cache instantiate cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination applyEquality lambdaEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination hyp_replacement applyLambdaEquality unionElimination equalityElimination dependent_pairFormation promote_hyp voidElimination minusEquality independent_pairFormation productEquality inlFormation addLevel impliesFunctionality orFunctionality

Latex:
\mforall{}a,b:\mBbbQ{}.    Dec(a  <  b)



Date html generated: 2018_05_21-PM-11_53_30
Last ObjectModification: 2017_07_26-PM-06_45_39

Theory : rationals


Home Index