Nuprl Lemma : qadd_ac_1_q
∀[a,b,c:ℚ].  ((a + b + c) = (b + a + c) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qadd: r + s
, 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
abgrp: AbGrp
, 
grp: Group{i}
, 
mon: Mon
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
qadd_grp: <ℚ+>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
infix_ap: x f y
Lemmas referenced : 
abmonoid_ac_1, 
qadd_grp_wf, 
subtype_rel_sets, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
comm_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
sqequalRule, 
instantiate, 
setEquality, 
cumulativity, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality_alt, 
setIsType, 
universeIsType, 
independent_isectElimination, 
lambdaFormation_alt
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    ((a  +  b  +  c)  =  (b  +  a  +  c))
Date html generated:
2020_05_20-AM-09_14_12
Last ObjectModification:
2020_02_04-PM-01_46_29
Theory : rationals
Home
Index