Nuprl Lemma : qminus-qsub

[r,s:ℚ].  (-(s r) (r s) ∈ ℚ)


Proof




Definitions occuring in Statement :  qsub: s qmul: s rationals: uall: [x:A]. B[x] minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B true: True qsub: s squash: T prop: and: P ∧ Q uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  rationals_wf int-subtype-rationals qmul_wf qadd_wf equal_wf squash_wf true_wf qmul_over_plus_qrng qinv_inv_q qadd_comm_q iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache minusEquality natural_numberEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[r,s:\mBbbQ{}].    (-(s  -  r)  =  (r  -  s))



Date html generated: 2018_05_21-PM-11_51_51
Last ObjectModification: 2017_07_26-PM-06_44_43

Theory : rationals


Home Index