Nuprl Lemma : qinv_inv_q

[a:ℚ]. (-(-(a)) a ∈ ℚ)


Proof




Definitions occuring in Statement :  qmul: s rationals: uall: [x:A]. B[x] minus: -n natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) grp_inv: ~ pi2: snd(t)
Lemmas referenced :  grp_inv_inv qadd_grp_wf grp_subtype_igrp abgrp_subtype_grp subtype_rel_transitivity abgrp_wf grp_wf igrp_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality instantiate independent_isectElimination sqequalRule

Latex:
\mforall{}[a:\mBbbQ{}].  (-(-(a))  =  a)



Date html generated: 2020_05_20-AM-09_13_54
Last ObjectModification: 2020_02_03-PM-02_24_39

Theory : rationals


Home Index