Nuprl Lemma : grp_inv_inv

[g:IGroup]. ∀[a:|g|].  ((~ (~ a)) a ∈ |g|)


Proof




Definitions occuring in Statement :  igrp: IGroup grp_inv: ~ grp_car: |g| uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T igrp: IGroup imon: IMonoid uimplies: supposing a squash: T prop: and: P ∧ Q true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  grp_car_wf igrp_wf grp_op_cancel_l grp_inv_wf equal_wf squash_wf true_wf grp_inverse iff_weakening_equal grp_id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache applyEquality independent_isectElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality productElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[g:IGroup].  \mforall{}[a:|g|].    ((\msim{}  (\msim{}  a))  =  a)



Date html generated: 2017_10_01-AM-08_13_39
Last ObjectModification: 2017_02_28-PM-01_57_54

Theory : groups_1


Home Index