Nuprl Lemma : qmul_over_plus_qrng

[a,b,c:ℚ].  (((a (b c)) ((a b) (a c)) ∈ ℚ) ∧ (((b c) a) ((b a) (c a)) ∈ ℚ))


Proof




Definitions occuring in Statement :  qmul: s qadd: s rationals: uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qrng: <ℚ+*> rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) rng_plus: +r infix_ap: y
Lemmas referenced :  rng_times_over_plus qrng_wf crng_subtype_rng
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (((a  *  (b  +  c))  =  ((a  *  b)  +  (a  *  c)))  \mwedge{}  (((b  +  c)  *  a)  =  ((b  *  a)  +  (c  *  a))))



Date html generated: 2020_05_20-AM-09_15_23
Last ObjectModification: 2020_02_03-PM-02_49_09

Theory : rationals


Home Index