Nuprl Lemma : member-decide-assert
∀[x:𝔹]. (if x then tt else inr (λx.⋅)  fi  ∈ Dec(↑x))
Proof
Definitions occuring in Statement : 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bool: 𝔹, 
decidable: Dec(P), 
it: ⋅, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
lambda: λx.A[x], 
inr: inr x 
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
assert: ↑b, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
true: True, 
prop: ℙ, 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
false: False, 
not: ¬A, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
top: Top
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
it_wf, 
subtype_rel_self, 
equal-wf-base, 
not_wf, 
true_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
top_wf, 
subtype_rel_union, 
unit_wf2, 
false_wf, 
subtype_rel_dep_function
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
hypothesis, 
thin, 
extract_by_obid, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
sqequalRule, 
isectElimination, 
productElimination, 
independent_isectElimination, 
inlEquality, 
applyEquality, 
intEquality, 
baseClosed, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
inrEquality, 
lambdaEquality, 
voidEquality, 
functionEquality, 
functionExtensionality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[x:\mBbbB{}].  (if  x  then  tt  else  inr  (\mlambda{}x.\mcdot{})    fi    \mmember{}  Dec(\muparrow{}x))
Date html generated:
2017_04_14-AM-07_39_02
Last ObjectModification:
2017_02_27-PM-03_10_51
Theory : equality!deciders
Home
Index