Nuprl Lemma : qless-int

[x,y:ℤ].  uiff(x < y;x < y)


Proof




Definitions occuring in Statement :  qless: r < s less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] int:
Definitions unfolded in proof :  qless: r < s grp_lt: a < b set_lt: a <b set_blt: a <b b oset_of_ocmon: g↓oset dset_of_mon: g↓set set_le: b pi2: snd(t) qadd_grp: <ℚ+> grp_le: b pi1: fst(t) infix_ap: y q_le: q_le(r;s) qsub: s uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) subtype_rel: A ⊆B top: Top ifthenelse: if then else fi  btrue: tt uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: bool: 𝔹 unit: Unit it: iff: ⇐⇒ Q rev_implies:  Q band: p ∧b q bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b bor: p ∨bq int_term: int_term() nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  valueall-type-has-valueall int-valueall-type evalall-reduce qmul-elim int-subtype-rationals qadd-elim isint-int istype-void qpositive-elim qeq-elim decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf intformor_wf itermConstant_wf itermAdd_wf itermMultiply_wf intformeq_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_or_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_wf less_than_wf int_subtype_base member-less_than assert_wf bor_wf lt_int_wf eq_int_wf eqtt_to_assert iff_transitivity or_wf equal-wf-base iff_weakening_uiff assert_of_bor assert_of_lt_int assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot bnot_wf neg_assert_of_eq_int bfalse_wf not_wf subtype_rel_self int_termco_wf has-value_wf-partial nat_wf set-value-type le_wf int-value-type int_termco_size_wf btrue_wf qless_wf qless_witness assert_of_band assert_of_bnot assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality callbyvalueReduce because_Cache minusEquality natural_numberEquality applyEquality isect_memberEquality_alt voidElimination multiplyEquality isintReduceTrue addEquality independent_pairFormation isect_memberFormation_alt productElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality universeIsType productIsType unionIsType equalityIsType4 inhabitedIsType baseApply closedConclusion baseClosed functionIsType rename inlFormation_alt lambdaFormation_alt equalityElimination equalityTransitivity equalitySymmetry inrFormation_alt equalityIsType2 promote_hyp instantiate cumulativity equalityIsType1 productEquality setEquality independent_pairEquality

Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  <  y;x  <  y)



Date html generated: 2019_10_16-AM-11_48_00
Last ObjectModification: 2018_10_11-PM-03_38_13

Theory : rationals


Home Index