Nuprl Lemma : qless-int
∀[x,y:ℤ].  uiff(x < y;x < y)
Proof
Definitions occuring in Statement : 
qless: r < s, 
less_than: a < b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
int: ℤ
Definitions unfolded in proof : 
qless: r < s, 
grp_lt: a < b, 
set_lt: a <p b, 
set_blt: a <b b, 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
set_le: ≤b, 
pi2: snd(t), 
qadd_grp: <ℚ+>, 
grp_le: ≤b, 
pi1: fst(t), 
infix_ap: x f y, 
q_le: q_le(r;s), 
qsub: r - s, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
subtype_rel: A ⊆r B, 
top: Top, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
band: p ∧b q, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
bor: p ∨bq, 
int_term: int_term(), 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
qmul-elim, 
int-subtype-rationals, 
qadd-elim, 
isint-int, 
istype-void, 
qpositive-elim, 
qeq-elim, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
intformor_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermMultiply_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_or_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
less_than_wf, 
int_subtype_base, 
member-less_than, 
assert_wf, 
bor_wf, 
lt_int_wf, 
eq_int_wf, 
eqtt_to_assert, 
iff_transitivity, 
or_wf, 
equal-wf-base, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_lt_int, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
bnot_wf, 
neg_assert_of_eq_int, 
bfalse_wf, 
not_wf, 
subtype_rel_self, 
int_termco_wf, 
has-value_wf-partial, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
int_termco_size_wf, 
btrue_wf, 
qless_wf, 
qless_witness, 
assert_of_band, 
assert_of_bnot, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
callbyvalueReduce, 
because_Cache, 
minusEquality, 
natural_numberEquality, 
applyEquality, 
isect_memberEquality_alt, 
voidElimination, 
multiplyEquality, 
isintReduceTrue, 
addEquality, 
independent_pairFormation, 
isect_memberFormation_alt, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
universeIsType, 
productIsType, 
unionIsType, 
equalityIsType4, 
inhabitedIsType, 
baseApply, 
closedConclusion, 
baseClosed, 
functionIsType, 
rename, 
inlFormation_alt, 
lambdaFormation_alt, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation_alt, 
equalityIsType2, 
promote_hyp, 
instantiate, 
cumulativity, 
equalityIsType1, 
productEquality, 
setEquality, 
independent_pairEquality
Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  <  y;x  <  y)
 Date html generated: 
2019_10_16-AM-11_48_00
 Last ObjectModification: 
2018_10_11-PM-03_38_13
Theory : rationals
Home
Index