Nuprl Lemma : qle-iff

a,b:ℚ.  uiff(a ≤ b;a < b ∨ (a b ∈ ℚ))


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s rationals: uiff: uiff(P;Q) all: x:A. B[x] or: P ∨ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q or: P ∨ Q prop: guard: {T} false: False
Lemmas referenced :  qless_trichot_qorder qless_complement_qorder rationals_wf qle_witness equal_wf qless_wf qless_transitivity_2_qorder qless_irreflexivity qle_wf qle_weakening_lt_qorder qle_weakening_eq_qorder or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination because_Cache hypothesis productElimination independent_pairFormation isect_memberFormation introduction independent_functionElimination rename unionElimination inlFormation sqequalRule inrFormation independent_isectElimination voidElimination

Latex:
\mforall{}a,b:\mBbbQ{}.    uiff(a  \mleq{}  b;a  <  b  \mvee{}  (a  =  b))



Date html generated: 2016_05_15-PM-10_45_48
Last ObjectModification: 2015_12_27-PM-07_53_14

Theory : rationals


Home Index