Nuprl Lemma : qle_weakening_lt_qorder

[a,b:ℚ].  a ≤ supposing a < b


Proof




Definitions occuring in Statement :  qle: r ≤ s qless: r < s rationals: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a qadd_grp: <ℚ+> grp_car: |g| pi1: fst(t) qle: r ≤ s grp_leq: a ≤ b infix_ap: y implies:  Q qless: r < s grp_lt: a < b set_lt: a <b oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p|
Lemmas referenced :  grp_leq_weakening_lt qadd_grp_wf2 ocmon_subtype_omon ocgrp_subtype_ocmon subtype_rel_transitivity ocgrp_wf ocmon_wf omon_wf assert_witness grp_le_wf mon_subtype_grp_sig dmon_subtype_mon abdmonoid_dmon ocmon_subtype_abdmonoid abdmonoid_wf dmon_wf mon_wf grp_sig_wf istype-assert set_blt_wf oset_of_ocmon_wf0 rationals_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality instantiate independent_isectElimination sqequalRule isect_memberFormation_alt hypothesisEquality independent_functionElimination because_Cache isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeIsType

Latex:
\mforall{}[a,b:\mBbbQ{}].    a  \mleq{}  b  supposing  a  <  b



Date html generated: 2020_05_20-AM-09_14_49
Last ObjectModification: 2020_02_01-AM-10_37_56

Theory : rationals


Home Index