Nuprl Lemma : ocmon_subtype_omon
OCMon ⊆r OMon
Proof
Definitions occuring in Statement : 
ocmon: OCMon
, 
omon: OMon
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
ocmon: OCMon
, 
omon: OMon
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
abmonoid: AbMon
, 
mon: Mon
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
Lemmas referenced : 
subtype_rel_sets, 
abmonoid_wf, 
ulinorder_wf, 
grp_car_wf, 
assert_wf, 
grp_le_wf, 
equal_wf, 
bool_wf, 
grp_eq_wf, 
band_wf, 
cancel_wf, 
grp_op_wf, 
uall_wf, 
monot_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
lambdaEquality, 
productEquality, 
cumulativity, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
functionEquality, 
independent_isectElimination, 
setEquality, 
lambdaFormation, 
productElimination, 
independent_pairFormation
Latex:
OCMon  \msubseteq{}r  OMon
Date html generated:
2018_05_21-PM-03_14_01
Last ObjectModification:
2018_05_19-AM-08_24_48
Theory : groups_1
Home
Index