Nuprl Lemma : expectation-monotone

[p:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(p;n)].  E(n;X) ≤ E(n;Y) supposing X ≤ Y


Proof




Definitions occuring in Statement :  rv-le: X ≤ Y expectation: E(n;F) random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace qle: r ≤ s nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: qle: r ≤ s grp_leq: a ≤ b expectation: E(n;F) ycomb: Y eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt infix_ap: y subtype_rel: A ⊆B random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace rationals: quotient: x,y:A//B[x; y] grp_car: |g| pi1: fst(t) qadd_grp: <ℚ+> le: A ≤ B less_than': less_than'(a;b) guard: {T} decidable: Dec(P) or: P ∨ Q p-outcome: Outcome int_seg: {i..j-} nat_plus: + lelt: i ≤ j < k rv-le: X ≤ Y bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T sq_stable: SqStable(P) so_lambda: λ2x.t[x] so_apply: x[s] rv-shift: rv-shift(x;X) cand: c∧ B true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than assert_witness grp_le_wf qadd_grp_wf2 null-seq_wf int_seg_wf length_wf rationals_wf subtype_rel_self grp_car_wf rv-le_wf istype-le random-variable_wf expectation_wf mon_subtype_grp_sig dmon_subtype_mon abdmonoid_dmon ocmon_subtype_abdmonoid ocgrp_subtype_ocmon subtype_rel_transitivity ocgrp_wf ocmon_wf abdmonoid_wf dmon_wf mon_wf grp_sig_wf subtract-1-ge-0 decidable__le intformnot_wf int_formula_prop_not_lemma istype-nat finite-prob-space_wf p-outcome_wf eq_int_wf equal-wf-base bool_wf int_subtype_base assert_wf intformeq_wf int_formula_prop_eq_lemma bnot_wf not_wf istype-assert weighted-sum_wf2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma rv-shift_wf decidable__lt uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot ws-monotone int_seg_properties sq_stable_from_decidable qle_wf int-subtype-rationals decidable__qle l_all_iff l_member_wf cons-seq_wf subtype_rel_function int_seg_subtype istype-false not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero minus-minus add-associates add-commutes le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType isectIsTypeImplies inhabitedIsType functionIsTypeImplies applyEquality because_Cache dependent_set_memberEquality_alt instantiate unionElimination baseApply closedConclusion baseClosed intEquality equalityIstype sqequalBase equalitySymmetry functionIsType productElimination equalityElimination equalityTransitivity imageElimination setIsType imageMemberEquality addEquality minusEquality multiplyEquality

Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(p;n)].    E(n;X)  \mleq{}  E(n;Y)  supposing  X  \mleq{}  Y



Date html generated: 2020_05_20-AM-09_31_29
Last ObjectModification: 2019_11_27-PM-04_57_38

Theory : randomness


Home Index