Nuprl Lemma : expectation-monotone
∀[p:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(p;n)].  E(n;X) ≤ E(n;Y) supposing X ≤ Y
Proof
Definitions occuring in Statement : 
rv-le: X ≤ Y
, 
expectation: E(n;F)
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
qle: r ≤ s
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
qle: r ≤ s
, 
grp_leq: a ≤ b
, 
expectation: E(n;F)
, 
ycomb: Y
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
rationals: ℚ
, 
quotient: x,y:A//B[x; y]
, 
grp_car: |g|
, 
pi1: fst(t)
, 
qadd_grp: <ℚ+>
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
p-outcome: Outcome
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
lelt: i ≤ j < k
, 
rv-le: X ≤ Y
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rv-shift: rv-shift(x;X)
, 
cand: A c∧ B
, 
true: True
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
assert_witness, 
grp_le_wf, 
qadd_grp_wf2, 
null-seq_wf, 
int_seg_wf, 
length_wf, 
rationals_wf, 
subtype_rel_self, 
grp_car_wf, 
rv-le_wf, 
istype-le, 
random-variable_wf, 
expectation_wf, 
mon_subtype_grp_sig, 
dmon_subtype_mon, 
abdmonoid_dmon, 
ocmon_subtype_abdmonoid, 
ocgrp_subtype_ocmon, 
subtype_rel_transitivity, 
ocgrp_wf, 
ocmon_wf, 
abdmonoid_wf, 
dmon_wf, 
mon_wf, 
grp_sig_wf, 
subtract-1-ge-0, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-nat, 
finite-prob-space_wf, 
p-outcome_wf, 
eq_int_wf, 
equal-wf-base, 
bool_wf, 
int_subtype_base, 
assert_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
bnot_wf, 
not_wf, 
istype-assert, 
weighted-sum_wf2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
rv-shift_wf, 
decidable__lt, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
ws-monotone, 
int_seg_properties, 
sq_stable_from_decidable, 
qle_wf, 
int-subtype-rationals, 
decidable__qle, 
l_all_iff, 
l_member_wf, 
cons-seq_wf, 
subtype_rel_function, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
minus-minus, 
add-associates, 
add-commutes, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
applyEquality, 
because_Cache, 
dependent_set_memberEquality_alt, 
instantiate, 
unionElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
equalityIstype, 
sqequalBase, 
equalitySymmetry, 
functionIsType, 
productElimination, 
equalityElimination, 
equalityTransitivity, 
imageElimination, 
setIsType, 
imageMemberEquality, 
addEquality, 
minusEquality, 
multiplyEquality
Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(p;n)].    E(n;X)  \mleq{}  E(n;Y)  supposing  X  \mleq{}  Y
Date html generated:
2020_05_20-AM-09_31_29
Last ObjectModification:
2019_11_27-PM-04_57_38
Theory : randomness
Home
Index