Step
*
1
1
1
1
1
of Lemma
slln-lemma2
.....truecase.....
1. p : FinProbSpace
2. f : ℕ ⟶ ℕ
3. X : n:ℕ ⟶ RandomVariable(p;f[n])
4. s : ℚ
5. k : ℚ
6. ∀n:ℕ. ∀i:ℕn. f[i] < f[n]
7. ∀n:ℕ. ((E(f[n];X[n]) = 0 ∈ ℚ) ∧ (E(f[n];(x.x * x) o X[n]) = s ∈ ℚ) ∧ (E(f[n];(x.(x * x) * x * x) o X[n]) = k ∈ ℚ))
8. ∀n:ℕ. ∀i:ℕn. rv-disjoint(p;f[n];X[i];X[n])
9. B : ℚ
10. 0 ≤ B
11. ∀n:ℕ. (E(f[n];(x.(x * x) * x * x) o rv-partial-sum(n;i.X[i])) ≤ (B * n * n))
12. n : ℕ
13. ∀k:ℕn. (rv-partial-sum(k;i.X[i]) ∈ RandomVariable(p;f[n]))
14. i : ℤ
15. 0 ≤ i
16. i < n
17. i = 0 ∈ ℤ
⊢ E(f[n];0) ≤ (B * 0)
BY
{ (RWO "expectation-rv-const" 0 THEN Auto THEN BLemma `non-neg-qmul` THEN Auto) }
Latex:
Latex:
.....truecase.....
1. p : FinProbSpace
2. f : \mBbbN{} {}\mrightarrow{} \mBbbN{}
3. X : n:\mBbbN{} {}\mrightarrow{} RandomVariable(p;f[n])
4. s : \mBbbQ{}
5. k : \mBbbQ{}
6. \mforall{}n:\mBbbN{}. \mforall{}i:\mBbbN{}n. f[i] < f[n]
7. \mforall{}n:\mBbbN{}
((E(f[n];X[n]) = 0)
\mwedge{} (E(f[n];(x.x * x) o X[n]) = s)
\mwedge{} (E(f[n];(x.(x * x) * x * x) o X[n]) = k))
8. \mforall{}n:\mBbbN{}. \mforall{}i:\mBbbN{}n. rv-disjoint(p;f[n];X[i];X[n])
9. B : \mBbbQ{}
10. 0 \mleq{} B
11. \mforall{}n:\mBbbN{}. (E(f[n];(x.(x * x) * x * x) o rv-partial-sum(n;i.X[i])) \mleq{} (B * n * n))
12. n : \mBbbN{}
13. \mforall{}k:\mBbbN{}n. (rv-partial-sum(k;i.X[i]) \mmember{} RandomVariable(p;f[n]))
14. i : \mBbbZ{}
15. 0 \mleq{} i
16. i < n
17. i = 0
\mvdash{} E(f[n];0) \mleq{} (B * 0)
By
Latex:
(RWO "expectation-rv-const" 0 THEN Auto THEN BLemma `non-neg-qmul` THEN Auto)
Home
Index