Nuprl Lemma : slln-lemma2

p:FinProbSpace. ∀f:ℕ ⟶ ℕ. ∀X:n:ℕ ⟶ RandomVariable(p;f[n]). ∀s,k:ℚ.
  ((∀n:ℕ. ∀i:ℕn.  rv-disjoint(p;f[n];X[i];X[n]))
      (∃B:ℚ
          ∀n:ℕ
            (E(f[n];rv-partial-sum(n;k.if (k =z 0)
            then 0
            else (x.(x x) x) (1/k)*rv-partial-sum(k;i.X[i])
            fi )) ≤ B))) supposing 
     ((∀n:ℕ
         ((E(f[n];X[n]) 0 ∈ ℚ)
         ∧ (E(f[n];(x.x x) X[n]) s ∈ ℚ)
         ∧ (E(f[n];(x.(x x) x) X[n]) k ∈ ℚ))) and 
     (∀n:ℕ. ∀i:ℕn.  f[i] < f[n]))


Proof




Definitions occuring in Statement :  rv-partial-sum: rv-partial-sum(n;i.X[i]) rv-compose: (x.F[x]) X rv-disjoint: rv-disjoint(p;n;X;Y) expectation: E(n;F) rv-const: a rv-scale: q*X random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace qle: r ≤ s qdiv: (r/s) qmul: s rationals: int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) less_than: a < b uimplies: supposing a so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] int_seg: {i..j-} nat: lelt: i ≤ j < k and: P ∧ Q prop: subtype_rel: A ⊆B implies:  Q exists: x:A. B[x] le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2x.t[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b iff: ⇐⇒ Q rev_implies:  Q nequal: a ≠ b ∈  ge: i ≥  int_upper: {i...} satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rv-partial-sum: rv-partial-sum(n;i.X[i]) int_nzero: -o squash: T true: True rv-compose: (x.F[x]) X rv-scale: q*X random-variable: RandomVariable(p;n) p-outcome: Outcome qmul: s callbyvalueall: callbyvalueall evalall: evalall(t) cand: c∧ B decidable: Dec(P) rev_uimplies: rev_uimplies(P;Q) qge: a ≥ b rv-const: a rv-le: X ≤ Y qle: r ≤ s grp_leq: a ≤ b infix_ap: y grp_le: b pi1: fst(t) pi2: snd(t) qadd_grp: <ℚ+> q_le: q_le(r;s) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s lt_int: i <j eq_int: (i =z j) qdiv: (r/s) qinv: 1/r qeq: qeq(r;s)
Lemmas referenced :  member-less_than le_wf nat_wf int_seg_wf slln-lemma1 qmul_wf int-subtype-rationals rv-partial-sum_wf int_seg_subtype_nat false_wf subtype_rel-random-variable le_weakening2 all_wf qle_wf expectation_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int rv-const_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf equal-wf-T-base iff_weakening_uiff assert_of_bnot upper_subtype_nat nat_properties nequal-le-implies zero-add rv-compose_wf rv-scale_wf qdiv_wf subtype_rel_set rationals_wf int_upper_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int-equal-in-rationals rv-disjoint_wf less_than_wf random-variable_wf finite-prob-space_wf expectation-qsum assert-bnot neg_assert_of_eq_int lelt_wf int_nzero-rational nequal_wf qsum-qle qmul-mul int_entire_a equal-wf-base int_subtype_base uiff_transitivity squash_wf true_wf expectation-rv-const subtype_rel_self iff_weakening_equal non-neg-qmul qle_reflexivity expectation-monotone-in-first p-outcome_wf mul_nzero itermMultiply_wf intformnot_wf int_term_value_mul_lemma int_formula_prop_not_lemma zero_ann_a qmul_assoc_qrng qmul_ac_1_qrng qmul_comm_qrng qmul-qdiv expectation-rv-scale qinv-nonneg qmul-positive qless-int decidable__lt intformless_wf int_formula_prop_less_lemma qless_wf qle_functionality_wrt_implies qmul_functionality_wrt_qle qle_weakening_eq_qorder expectation-non-neg q-square-non-neg qmul_preserves_qle qmul_com qmul_assoc qmul-qdiv-cancel qsum_wf prod_sum_l_q decidable__le decidable__equal_int int_seg_properties sum_unroll_base_q qmul_zero_qrng qmul_preserves_qle2 qle_witness sum_unroll_lo_q qsum-reciprocal-squares-bound decidable__equal_rationals qadd_wf qmul_over_plus_qrng mon_ident_q qinv-positive qle_weakening_lt_qorder qmul-qdiv-cancel2 qmul_one_qrng qmul_preserves_qless q-square-positive qle-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality setElimination rename dependent_set_memberEquality productElimination hypothesis natural_numberEquality because_Cache independent_isectElimination independent_pairEquality axiomEquality independent_functionElimination dependent_pairFormation independent_pairFormation equalityTransitivity equalitySymmetry functionExtensionality unionElimination equalityElimination promote_hyp instantiate cumulativity voidElimination intEquality baseClosed impliesFunctionality hypothesis_subsumption approximateComputation int_eqEquality isect_memberEquality voidEquality addLevel productEquality functionEquality hyp_replacement applyLambdaEquality multiplyEquality baseApply closedConclusion imageElimination imageMemberEquality universeEquality inlFormation minusEquality

Latex:
\mforall{}p:FinProbSpace.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}X:n:\mBbbN{}  {}\mrightarrow{}  RandomVariable(p;f[n]).  \mforall{}s,k:\mBbbQ{}.
    ((\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    rv-disjoint(p;f[n];X[i];X[n]))
          {}\mRightarrow{}  (\mexists{}B:\mBbbQ{}
                    \mforall{}n:\mBbbN{}
                        (E(f[n];rv-partial-sum(n;k.if  (k  =\msubz{}  0)
                        then  0
                        else  (x.(x  *  x)  *  x  *  x)  o  (1/k)*rv-partial-sum(k;i.X[i])
                        fi  ))  \mleq{}  B)))  supposing 
          ((\mforall{}n:\mBbbN{}
                  ((E(f[n];X[n])  =  0)
                  \mwedge{}  (E(f[n];(x.x  *  x)  o  X[n])  =  s)
                  \mwedge{}  (E(f[n];(x.(x  *  x)  *  x  *  x)  o  X[n])  =  k)))  and 
          (\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.    f[i]  <  f[n]))



Date html generated: 2018_05_22-AM-00_42_30
Last ObjectModification: 2018_05_19-PM-04_00_04

Theory : randomness


Home Index